scholarly journals Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefania Sciara ◽  
Piotr Roztocki ◽  
Bennet Fischer ◽  
Christian Reimer ◽  
Luis Romero Cortés ◽  
...  

Abstract Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out-of-lab use, photon generation and processing through integrated devices and off-the-shelf components are in high demand. Similarly, multi-level entanglement detection must be experimentally practical, i.e., ideally requiring feasible single-qudit projections and high noise tolerance. Here, we focus on multi-level optical Bell and cluster states as a critical resource for quantum technologies, as well as on universal witness operators for their feasible detection and entanglement characterization. Time- and frequency-entangled states are the main platform considered in this context. We review a promising approach for the scalable, cost-effective generation and processing of these states by using integrated quantum frequency combs and fiber-based devices, respectively. We finally report an experimentally practical entanglement identification and characterization technique based on witness operators that is valid for any complex photon state and provides a good compromise between experimental feasibility and noise robustness. The results reported here can pave the way toward boosting the implementation of quantum technologies in integrated and widely accessible photonic platforms.

2003 ◽  
Vol 766 ◽  
Author(s):  
Vineet Sharma ◽  
Arief B. Suriadi ◽  
Frank Berauer ◽  
Laurie S. Mittelstadt

AbstractNormal photolithography tools have focal depth limitations and are unable to meet the expectations of high resolution photolithography on highly topographic structures. This paper shows a cost effective and promising technique of combining two different approaches to achieve critical dimensions of traces on slope pattern continuity on highly topographic structures. Electrophoretically deposited photoresist is used on 3-D structured wafers. This photoresist coating technique is fairly known in the MEMS industries to achieve uniform and conformal photoresist films on 3D surfaces. Multi step exposures are used to expose electrophoretically deposited photoresist. AlCu (Cu-0.5%), 0.47-0.53 μm thick metal film is deposited on 3D structured silicon substrate to plate photoresist. By combining these two novel methods, metal (AlCu) traces of 75 μm line width and 150 μm pitch (from top flat to down the slope) have been demonstrated on isotropically etched 350 μm deep trenches with 5-10% line width loss.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Pawan Jolly ◽  
Nello Formisano ◽  
Pedro Estrela

AbstractThe use of aptamers in biosensing has attracted considerable attention as an alternative to antibodies because of their unique properties such as long-term stability, cost-effectiveness and adjustability to various applications. Among cancers, the early diagnosis of prostate cancer (PCa) is one of the greatest concerns for ageing men worldwide. One of the most commonly used biomarkers for PCa is prostate-specific antigen (PSA), which can be found in elevated levels in patients with cancer. This review presents the gradual transition of research from antibody-based to aptamerbased biosensors, specifically for PSA. A brief description on aptamer-based biosensing for other PCa biomarkers is also presented. Special attention is given to electrochemical methods as analytical techniques for the development of simple, sensitive and cost-effective biosensors. The review also focuses on the different surface chemistries exploited for fabrication and their applications in clinical samples. The use of aptamers represents a promising tool for the development of point-ofcare biosensors for the early detection of prostate cancer. In view of the unmatched upper hand of aptamers, future prospects are also discussed, not only in the point-of-care format but also in other novel applications.


2010 ◽  
Vol 75 ◽  
pp. 230-239
Author(s):  
Herbert O. Moser ◽  
Linke Jian ◽  
Shenbaga M.P. Kalaiselvi ◽  
Selven Virasawmy ◽  
Sivakumar M. Maniam ◽  
...  

The function of metamaterials relies on their resonant response to electromagnetic waves in characteristic spectral bands. To make metamaterials homogeneous, the size of the basic resonant element should be less than 10% of the wavelength. For the THz range up to the visible, structure details of 50 nm to 30 μm are required as are high aspect ratios, tall heights, and large areas. For such specifications, lithography, in particular, synchrotron radiation deep X-ray lithography, is the method of choice. X-ray masks are made via primary pattern generation by means of electron or laser writing. Several different X-ray masks and accurate mask-substrate alignment are necessary for architectures requiring multi-level lithography. Lithography is commonly followed by electroplating of metallic replica. The process can also yield mould inserts for cost-effective manufacture by plastic moulding. We made metamaterials based on rod-split-rings, split-cylinders, S-string bi-layer chips, and S-string meta-foils. Left-handed resonance bands range from 2.4 to 216 THz. Latest is the all-metal self-supported flexible meta-foil with pass-bands of 45% up to 70% transmission at 3.4 to 4.5 THz depending on geometrical parameters.


2021 ◽  
Author(s):  
Sam Jones ◽  
Adam Joyce ◽  
Nikhil Balasubramanian

Abstract Objectives/Scope There are many different views on the Energy Transition. What is agreed is that to achieve current climate change targets, the journey to deep decarbonisation must start now. Scope 3 emissions are clearly the major contributor to total emissions and must be actively reduced. However, if Oil and Gas extraction is to be continued, then operators must understand, measure, and reduce Scope 1 and 2 emissions. This paper examines the constituent parts of typical Scope 1 emissions for O&G assets and discusses a credible pathway and initial steps towards decarbonisation of operations. Methods, Procedures, Process Emissions from typical assets are investigated: data is examined to determine the overall and individual contributions of Scope 1 emissions. A three tiered approach to emissions savings is presented: – Reduce overall energy usage – Seek to Remove environmental losses – Replace energy supply with low carbon alternatives A simple method, used to assess carbon emissions, based on an abatement of carbon from a cost per CO2 tonne averted basis is described. This method, Marginal Abatement Cost Curve (MACC), is based solely on cost efficiency. Other criteria such as safety, weight, footprint and reliability are not considered. Credible pathway for reduction of Scope 1 emissions is presented. Taking appropriate actions as described in the pathway, contributors are eliminated in a strategic order, allowing operators to contribute to deep decarbonisation. Results, Observations, Conclusions A typical offshore installation was modelled with a number of carbon abatement measures implemented. Results are presented as cost effective or non-cost-effective CO2 measures together with the residual CO2 emissions. Based on the data presented, many of the replace measures have a higher cost per tonne of CO2 abated than reduce and remove measure. These findings indicate that additional technological advancement may be needed to make alternative power solutions commercially viable. It also indicates that several CO2 abatement measures are cost effective today. The pathway proposes actions to implement carbon savings for offshore operators, it differentiates actions which can be taken today and those which require further technological advancement before they become commercially viable. The intent of this pathway is to demonstrate that the energy transition is not solely the preserve of the largest operators and every company can take positive steps towards supporting decarbonisation. Novel/Additive Information The world needs security of energy supply. Hydrocarbons are still integral; however, oil and gas operators must contribute to carbon reduction for society to meet the energy transition challenges. As government and societal appetite for decarbonisation heightens, demands are growing for traditional hydrocarbon assets to reduce their carbon footprint if they are to remain part of the energy mix. Society and therefore regulators will demand that more is done to address emissions during this transitional phase, consequently necessitating that direct emissions are reduced as much as possible. The pathway is accessible to all today, we need not wait for novel technologies to act.


2019 ◽  
Vol 31 (23) ◽  
pp. 1862-1865
Author(s):  
Stefania Sciara ◽  
Piotr Roztocki ◽  
Cristina Rimoldi ◽  
Mario Chemnitz ◽  
Bennet Fischer ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Alessandro Scano ◽  
Robert Mihai Mira ◽  
Pietro Cerveri ◽  
Lorenzo Molinari Tosatti ◽  
Marco Sacco

In the field of motion analysis, the gold standard devices are marker-based tracking systems. Despite being very accurate, their cost, stringent working environments, and long preparation time make them unsuitable for small clinics as well as for other scenarios such as industrial application. Since human-centered approaches have been promoted even outside clinical environments, the need for easy-to-use solutions to track human motion is topical. In this context, cost-effective devices, such as RGB-Depth (RBG-D) cameras have been proposed, aiming at a user-centered evaluation in rehabilitation or of workers in industry environment. In this paper, we aimed at comparing marker-based systems and RGB-D cameras for tracking human motion. We used a Vicon system (Vicon Motion Systems, Oxford, UK) as a gold standard for the analysis of accuracy and reliability of the Kinect V2 (Microsoft, Redmond, WA, USA) in a variety of gestures in the upper limb workspace—targeting rehabilitation and working applications. The comparison was performed on a group of 15 adult healthy subjects. Each subject had to perform two types of upper-limb movements (point-to-point and exploration) in three workspace sectors (central, right, and left) that might be explored in rehabilitation and industrial working scenarios. The protocol was conceived to test a wide range of the field of view of the RGB-D device. Our results, detailed in the paper, suggest that RGB-D sensors are adequate to track the upper limb for biomechanical assessments, even though relevant limitations can be found in the assessment and reliability of some specific degrees of freedom and gestures with respect to marker-based systems.


Author(s):  
Ivan Ćatipović ◽  
Nastia Degiuli ◽  
Andreja Werner ◽  
Većeslav Čorić ◽  
Jadranka Radanović

Towing as a specific type of sea transport is often used for installing objects for drilling and exploitation of underwater gas and oil wells. Also, towing proved to be a cost-effective solution for the installation of the offshore wind turbine electric generators at sea locations. Because of the mass of these objects the need for towing increases progressively. Time domain numerical model for the wave-induced motions of a towed ship and the towline tension in regular head seas is presented in this paper. For the sake of simplicity, one end of the towing line is attached to ship’s bow and another end has prescribed straight line motion. All considerations are done in the vertical plane so the ship is modeled as a rigid body with three degrees of freedom. Hydrodynamic loadings due to waves are taken into account along with added mass and damping. Dynamics of the towing line is described by finite elements. Due to the nonlinear properties of the problem calculations are done in time domain. Comparison of the obtained numerical results is made with previously published results.


Author(s):  
Brian J. Slaboch ◽  
Philip Voglewede

This paper introduces the Underactuated Part Alignment System (UPAS) as a cost-effective and flexible approach to aligning parts in the vertical plane prior to an industrial robotic assembly task. The advantage of the UPAS is that it utilizes the degrees of freedom (DOFs) of a SCARA (Selective Compliant Assembly Robot Arm) type robot in conjunction with an external fixed post to achieve the desired part alignment. Three path planning techniques will be presented that can be used with the UPAS to achieve the proper part rotation.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6329
Author(s):  
Ruijun Li ◽  
Yongjun Wang ◽  
Pan Tao ◽  
Rongjun Cheng ◽  
Zhenying Cheng ◽  
...  

Laser beam drift greatly influences the accuracy of a four degrees of freedom (4-DOF) measurement system during the detection of machine tool errors, especially for long-distance measurement. A novel method was proposed using bellows to serve as a laser beam shield and air pumps to stabilize the refractive index of air. The inner diameter of the bellows and the control mode of the pumps were optimized through theoretical analysis and simulation. An experimental setup was established to verify the feasibility of the method under the temperature interference condition. The results indicated that the position stability of the laser beam spot can be improved by more than 79% under the action of pumping and inflating. The proposed scheme provides a cost-effective method to reduce the laser beam drift, which can be applied to improve the detection accuracy of a 4-DOF measurement system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Riccardo Gotti ◽  
Thomas Puppe ◽  
Yuriy Mayzlin ◽  
Julian Robinson-Tait ◽  
Szymon Wójtewicz ◽  
...  

Abstract Frequency combs have made optical metrology accessible to hundreds of laboratories worldwide and they have set new benchmarks in multi-species trace gas sensing for environmental, industrial and medical applications. However, current comb spectrometers privilege either frequency precision and sensitivity through interposition of a cw probe laser with limited tuning range, or spectral coverage and measurement time using the comb itself as an ultra-broadband probe. We overcome this restriction by introducing a comb-locked frequency-swept optical synthesizer that allows a continuous-wave laser to be swept in seconds over spectral ranges of several terahertz while remaining phase locked to an underlying frequency comb. This offers a unique degree of versatility, as the synthesizer can be either repeatedly scanned over a single absorption line to achieve ultimate precision and sensitivity, or swept in seconds over an entire rovibrational band to capture multiple species. The spectrometer enables us to determine line center frequencies with an absolute uncertainty of 30 kHz and at the same time to collect absorption spectra over more than 3 THz with state-of-the-art sensitivity of a few 10−10 cm−1. Beyond precision broadband spectroscopy, the proposed synthesizer is an extremely promising tool to force a breakthrough in terahertz metrology and coherent laser ranging.


Sign in / Sign up

Export Citation Format

Share Document