scholarly journals Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria

2015 ◽  
Vol 17 (4) ◽  
pp. 56-64 ◽  
Author(s):  
Marek Gryta ◽  
Marta Waszak ◽  
Maria Tomaszewska

Abstract In this work a fouling study of polypropylene membranes used for microfiltration of glycerol solutions fermented by Citrobacter freundii bacteria was presented. The permeate free of C. freundii bacteria and having a turbidity in the range of 0.72–1.46 NTU was obtained. However, the initial permeate flux (100–110 L/m2h at 30 kPa of transmembrane pressure) was decreased 3–5 fold during 2–3 h of process duration. The performed scanning electron microscope observations confirmed that the filtered bacteria and suspensions present in the broth formed a cake layer on the membrane surface. A method of periodical module rinsing was used for restriction of the fouling influence on a flux decline. Rinsing with water removed most of the bacteria from the membrane surface, but did not permit to restore the initial permeate flux. It was confirmed that the irreversible fouling was dominated during broth filtration. The formed deposit was removed using a 1 wt% solution of sodium hydroxide as a rinsing solution.

2006 ◽  
Vol 6 (1) ◽  
pp. 69-78 ◽  
Author(s):  
T. Harif ◽  
M. Hai ◽  
A. Adin

Electroflocculation (EF) is a coagulation/flocculation process in which active coagulant species are generated in situ by electrolytic oxidation of an appropriate anode material. The effect of colloidal suspension pretreatment by EF on membrane fouling was measured by flux decline at constant pressure. An EF cell was operated in batch mode and comprised two flat sheet electrodes, an aluminium anode and stainless steel cathode, which were immersed in the treated suspension, and connected to an external DC power supply. The cell was run at constant current between 0.06–0.2A. The results show that pre-EF enhances the permeate flux at pH 5 and 6.5, but only marginal improvement is observed at pH 8. At all pH values cake formation on the membrane surface was observed. The differences in membrane behavior can be explained by conventional coagulation theory and transitions between aluminium mononuclear species which affect particle characteristics and consequently cake properties. At pH 6.5, where sweep floc mechanism dominates due to increased precipitation of aluminium hydroxide, increased flux rates were observed. It is evident that EF can serve as an efficient pretreatment to ultrafiltration of colloid particles.


2004 ◽  
Vol 50 (12) ◽  
pp. 279-285 ◽  
Author(s):  
J.H. Kweon ◽  
D.F. Lawler

The biggest impediment for applying membrane processes is fouling that comes from mass flux (such as particle and organic matter) to the membrane surface and its pores. Numerous research articles have indicated that either particles or natural organic matter (NOM) has been the most detrimental foulant. Therefore, the role of particles in membrane fouling was investigated with two synthetic waters (having either particles alone or particles with simple organic matter) and a natural water. Membrane fouling was evaluated with flux decline behavior and direct images from scanning electron microscopy. The results showed that the combined fouling by kaolin and dextran (a simple organic compound selected as a surrogate for NOM) showed no difference from the fouling with only the organic matter. The similarity might stem from the fact that dextran (i.e., polysaccharide) has no ability to be adsorbed on the clay material, so that the polysaccharide behaves the same with respect to the membrane with or without clay material being present. In contrast to kaolin, the natural particles showed a dramatic effect on membrane fouling.


2012 ◽  
Vol 66 (11) ◽  
pp. 2291-2298 ◽  
Author(s):  
Meng-Wei Wan ◽  
Cybelle Morales Futalan ◽  
Cheng-Hung Chang ◽  
Chi-Chuah Kan

In this study, the effect of coagulation pretreatment on membrane fouling and ultrasonic cleaning efficiency was investigated using a dead-end polytetrafluoroethylene (PTFE) microfiltration system. The extent of membrane fouling was examined under different coagulation mechanisms such as charge neutralization (CN), electrostatic patch effect (EPE) and sweep flocculation (SW). Fouling through EPE mechanism provided the greatest flux decline and least permeate flux recovery over CN and SW. EPE produces more stable, smaller and more compact flocs while CN and SW have large, easily degraded and highly-branched structured flocs. The predominant fouling mechanism of EPE, CN and SW is pore blocking, a combination of pore blocking and cake formation, and cake formation, respectively. Better permeate flux recovery is observed with SW over CN and EPE, which implies formation of less dense and more porous cake deposits. The morphology of fouled membranes was examined using scanning electron microscopy (SEM).


2018 ◽  
Vol 77 (11) ◽  
pp. 2642-2656 ◽  
Author(s):  
C. Nirmala Rani ◽  
S. Karthikeyan

Abstract In this study, a slurry photocatalytic membrane reactor (PMR) was developed and evaluated for the degradation of aqueous phenanthrene (PHE). During continuous process with a hydraulic retention time (HRT) of 140 min, the maximum PHE degradation and total organic carbon (TOC) removal efficiencies were found to be 97% and 79%, respectively. The reuse and recovery potential of TiO2 was studied with continuous recycling. The major intermediates during photodegradation of PHE were found to be phenanthrenequinone, phenanthenol and fluorine. This study also includes an investigation of membrane fouling caused by hydrophilic nano TiO2. The cake layer observed on the membrane surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spectroscopy (EDS). In addition, the effect of operating parameters such as pH and permeate flux on membrane fouling were also investigated. Low permeate flux and alkaline conditions reduced membrane fouling.


2021 ◽  
Vol 83 (5) ◽  
pp. 1005-1016
Author(s):  
Yongji Zhang ◽  
Xiaotong Wang ◽  
Hexiu Ye ◽  
Lingling Zhou ◽  
Zhiling Zhao

Abstract Powered Activated Carbon – Membrane Bioreactors (PAC-MBRs) have been used with good results for slightly polluted water treatment. Our batch experiments showed that the transmembrane pressure of a PAC-MBR was 25% less than that of a MBR in one period of test, which indicated that PAC did help control the fouling in MBRs. Based on this observation, several mechanisms of membrane fouling of MBRs and PAC-MBRs were investigated to have some insight into how PAC brought a positive impact. The total resistances decreased by 60% and different resistances were redistributed after adding PAC. The dominant one changed from filtration resistance to cake resistance. These smaller cake resistances resulted from the PAC because, showing in the scanning electron microscopy pictures, it made the cake layer looser and rougher than that on a normal membrane. Meanwhile, the analysis of the membrane eluent showed that the addition of PAC changed the microbial species and its metabolites on the membrane and effectively reduced the adsorption of hydrophilic organic molecules on the membrane surface. Additionally, PAC prevented polypeptide compounds from being trapped inside the pores of membranes, so the cake on the PAC-MBR contaminated membrane surface was easier to scrape off. In the test of cleaning methods, alkaline cleaning removed the most organics from contaminated membranes to restore membrane performance.


2014 ◽  
Vol 1073-1076 ◽  
pp. 751-754
Author(s):  
Jun Xia Liu ◽  
Bing Zhi Dong ◽  
Wei Wei Huang

The main objective of this study was to investigate membrane fouling caused by natural organic matter (NOM). Flux measurement, fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM) were employed to compare the surface morphology of fouled membrane and chemically cleaned membrane. Sodium hypochlorite (NaClO), sodium hydroxide (NaOH), hydrochloric acid (HCl) were used as chemical cleaning agents respectively. Flux analysis demonstrated that chemical cleaning have little effect on flux recovery. FTIR spectrometry revealed that polysaccharide and protein took the major responsibility for membrane fouling. SEM showed that foulants filled the pores and blocked the membrane surface which led to the flux decline.


2021 ◽  
Vol 10 (1) ◽  
pp. 84-92
Author(s):  
Chinh Pham Duc ◽  
Thuy Nguyen Thi Thu ◽  
Tham Bui Thi ◽  
Quang Phan Ngoc ◽  
Cuong Pham Manh ◽  
...  

The photocatalytic reaction using TiO2 suspended to degrade the residues of toxic organic compounds has been extensively studied, but the ultilization of this process has not been recorded on an industrial scale. One of the primary reasons is the separation of TiO2 catalyst from the treated solution mixture. Conventional mechanical separation methods such as centrifugation, flocculation-deposition do not allow for thorough separation and catalytic reuse, whereas the microfiltration / ultrafiltration membrane process has been demonstrated to be capable of composting isolates very suspended particles. Accordingly, in this study, an experimental system separating TiO2-P25 suspension by microfiltration membrane 0.2 µm on laboratory scale was set up. Effects of operating factors: TiO2 concentration, pH value, transmembrane pressure and crosss flow velocity were investigated. Result shown that TiO2 concentration greater than 1 g / l will fundamentally diminish the permeate flux, futhermore, in the transmembrane  pressure differential (∆P) fluctuating from 0.3 to 1.2 bar, the relationship between J and ∆P is a linear relationship. In addition, the study likewise shown that the formation of the cake layer (scale) on the membrane surface is the fundamental driver of the permeate flux degradation over time. These results are the basis for integrating membrane and photocatalytic processes into a complete system for degradation toxic organic compound residues.


2014 ◽  
Vol 70 (1) ◽  
pp. 40-46 ◽  
Author(s):  
A. Charfi ◽  
J. Harmand ◽  
N. Ben Amar ◽  
A. Grasmick ◽  
M. Heran

Cake fouling is the leading cause of membrane permeability decrease when filtering mixed liquor suspension containing high suspended solid concentrations. A simple model is proposed to simulate the cake resistance evolution with time by considering a macro-scale fouling linked only to the accumulation of particles on the membrane surface. This accumulation appears as the difference between the flux of deposited particles due to the filtration and the flux of particles detached from the membrane surface due to the tangential shear stresses caused by recirculation flow in the sidestream membrane bioreactor (MBR) or gas sparging close to the membrane surface for submerged MBR configuration. Two determining parameters were then highlighted: the specific cake resistance and the ‘shear parameter’. Based on these parameters it is possible to predict model outputs as cake resistance and permeate flux evolution for short-time filtration periods.


1997 ◽  
Vol 36 (12) ◽  
pp. 259-266 ◽  
Author(s):  
C. Visvanathan ◽  
Byung-Soo Yang ◽  
S. Muttamara ◽  
R. Maythanukhraw

The optimum air backflushing and filtration cycle was investigated for a 0.1 μm hollow fiber membrane module immersed in an activated sludge aeration tank. It was found that 15 minutes filtration and 15 minutes air backflushing gave the best result both in terms of flux stability and net cumulative permeate volume. Although this cyclic operation could not completely remove the clogging, this process improved the flux by up to 371% compared to the continuous operation. During the long term runs, three different hydraulic retention times (HRT) of 12, 6 and 3 hours, corresponding to 0.16, 0.32 and 0.64 m3/m2.d of permeate flux respectively, were investigated. Stable operation was obtained at the HRT of 12 hours. Decrease in HRT led to rapid formation of a compact cake layer on the membrane surface thus increasing the transmembrane pressure. It was also noted that filtration pressure increases with increase in bioreactor MLSS concentration. With operation time, the MLVSS/MLSS value decreased without significant effect on the process performance, indicating that inorganic mass constantly accumulated in the bioreactor. All the experimental runs produced more than 90% removal of COD, and TKN. In terms of physical, chemical, biological and bacteriological parameters, the membrane bioreactor effluent was superior to the conventional activated sludge process.


2016 ◽  
Vol 74 (3) ◽  
pp. 766-776 ◽  
Author(s):  
Secil Bayar ◽  
Ahmet Karagunduz ◽  
Bulent Keskinler

The objective of this study was to investigate the influences of electroosmosis (EO) and electrophoresis (EP) on the permeate flux in submerged membrane bioreactors. When a polymeric membrane is placed in between an anode and a cathode, both EO and EP occur simultaneously, causing enhancement in flux. Results showed that after 150 min of filtration, the permeate fluxes were 60, 115, 175 and 260 L/m2/h at 0, 30, 40 and 50 V, respectively. It was shown that the EO was linearly changing with increasing voltage, reaching up to 54 L/m2/h at 50 V. EP was found to be a significant process in removing soluble microbial products from the membrane surface, resulting in an increase in permeate flux as the filtration progressed. About 20-fold of smaller protein and carbohydrate concentrations were found in the cake layer when the electrical field (EF) was applied. However, the EF application promoted pore fouling, because of the calcium and magnesium scaling.


Sign in / Sign up

Export Citation Format

Share Document