Surface modification of polymeric flat sheet membranes by adding oligomeric fluoroalcohol

2019 ◽  
Vol 39 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Neha Kundu ◽  
Hyung Keun Lee ◽  
Bal Raj Deshwal

Abstract The present study attempted to modify the surface of polymeric membranes by mixing 2-(perfluoroalkyl)ethanol with polyethersulfone to improve the hydrophobicity of the membrane. The characteristics of the surface-modified membrane were examined by using the contact angle, liquid entry pressure (LEPw), X-ray photoelectron spectroscopy spectra, and scanning electron microscopy measurements. The modified membrane was tested for SO2 absorption. The surface contact angle and LEPw values increased by the addition of fluoroalcohol. The fluorine/carbon atomic ratio decreased with increasing evaporation period. The modified membrane was utilized for the absorption of SO2 from the simulated flue gas in alkaline medium (0.5 m NaOH solution). The SO2 removal efficiency slightly decreased probably due to the transformation of the finger-like structure into a sponge-like structure, and the increase in the membrane resistance. The SO2 absorption rate also increased as the gas flow rate increased.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wenxia Zhao ◽  
Zenglin Wang ◽  
Liang Qiao ◽  
Shiwei Liu ◽  
Hongjian Zhao ◽  
...  

This study investigated the surface modification of polyimide (PI) film through TiO2 photocatalytic treatment. The effects of TiO2 content, treatment duration, and UV power on the surface topography, surface contact angle, and adhesion strength of the surface-modified PI films were investigated. The results indicated that, after surface modification under the optimal photocatalytic conditions, the surface contact angle of the PI film decreased from 84.4° to 38.8°, and the adhesion strength between the PI film and the electroless copper film reached 0.78 kN/m. X-ray photoelectron spectroscopy analysis further demonstrated that carboxyl groups formed on the surface of the PI film after photocatalytic treatment. The surface hydrophilicity and adhesion strength of the surface-modified PI film were enhanced due to the numerous carboxyl groups formed on its surface. Therefore, the photocatalytic treatment is an environmentally friendly and effective method for the surface modification of PI films.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Young-Pil Yun ◽  
Jae Yong Lee ◽  
Won Jae Jeong ◽  
Kyeongsoon Park ◽  
Hak-Jun Kim ◽  
...  

The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL) fibers modified using theγ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc) was grafted onto the PCL fibers by theγ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL). PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP) activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.


2009 ◽  
Vol 610-613 ◽  
pp. 1273-1277 ◽  
Author(s):  
Li Ren ◽  
Lian Na Zhao ◽  
Shi Heng Yin ◽  
Ying Jun Wang ◽  
Hao Chen ◽  
...  

In order to improve the surface hydrophilicity and the resistance to protein deposition of fluorosilicone acrylate RGP (rigid gas permeable) contact lens, low temperature ammonia plasma treatment was used to modify the lens surface. The changes of surface structures and properties were characterized by contact angle analyzer, X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). Effects of exposure time and plasma generating power on surface properties of the RGP contact lens were investigated. The surface contact angle measurements showed a great improvement of hydrophilicity after plasma treatment. XPS analysis indicated that the oxygen content and the nitrogen content increased remarkably after ammonia plasma treatment. Furthermore, the content of the hydrophilic group O-C=O/N-C=O on the surface increased and the content of the hydrophobic group CF2 decreased after plasma treatment. AFM results showed that ammonia plasma could lead to surface etching.


2005 ◽  
Vol 288-289 ◽  
pp. 303-306
Author(s):  
Feng Juan Jing ◽  
Nan Huang ◽  
Jun Ying Chen ◽  
Yong Xiang Leng ◽  
H. Sun

Aminopropyltriethoxysilane (APTE) was covalently interacted with hydroxyl on the surface of Ti-O films prepared by magnetron sputtering, and albumin and heparin were immobilized on the APTE-coated surface with addition of 1-ethyl-3- (3-dimethyl aminopropyl) carbodiimide (EDC) as cross-link agent. X-ray photoelectron spectroscopy (XPS) was used to investigate the modified surface. Contact angle results indicate that there was an increase in the contact angle to the surface of APTE-coated Ti-O films, and a decrease in the contact angle to the surface of albuminand heparin-immobilized surfaces. Blood platelet adhesion in vitro was improved significantly after immobilization of albumin and heparin on Ti-O films. Endothelial cell (EC) culture tests showed that EC could grow on the surface of Ti-O films immobilized with albumin and heparin, but the growth and proliferation behavior of endothelial cells was not as good as on naked Ti-O films. This investigation showed that the surface of bio-inert inorganic materials immobilized with biological molecules is feasible and effective for improving the blood compatibility.


2006 ◽  
Vol 13 (06) ◽  
pp. 819-823 ◽  
Author(s):  
WEIDONG LI ◽  
ENYONG DING

Surface-modified Poly(ethylene terephthalate) (PET) fabrics were prepared through thionylchlorided cellulose nano-crystal (CNC) reacting with hydroxyl groups at the surface of the alkali-etched PET fabrics. X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM) and thermogravimetric analysis (TGA) were employed to study the topography, superficial ingredients and thermal properties of the composite, respectively. It was confirmed by the observation of FE-SEM that the surface of PET fabrics was covered by the immobilized CNC particles, and increasing O/C atomic ratio in XPS-spectra was found with grafting. The TGA examination indicated that CNC-g-PET had less weight loss in the range of 300–350° than alkali-treated PET fibers, which was caused by the cross-linking effect of CNC particles with multi-ended reactive groups.


2016 ◽  
Vol 16 (4) ◽  
pp. 3295-3300 ◽  
Author(s):  
Shingo Tatara ◽  
Yasutaka Kuzumoto ◽  
Masatoshi Kitamura

The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-fluorobenzenethiol, 4-methoxybenzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.


2013 ◽  
Vol 747 ◽  
pp. 178-181 ◽  
Author(s):  
Wasana Kosorn ◽  
Boonlom Thavornyutikarn ◽  
Wanida Janvikul

Polycaprolactone (PCL) was surface modified with alkaline hydrolysis by NaOH and/or low pressure oxygen (O2) plasma treatment. The hydrolysis was conducted in two different stages: one was performed prior to PCL scaffold fabrication by a high pressure supercritical CO2 technique; the other was carried out after the fabrication. The resulting hydrolyzed PCL scaffolds, with pore sizes in the range of 150-250 μm, were denoted as pre-HPCL and post-HPCL, respectively. Both non-hydrolyzed and hydrolyzed PCL scaffolds were subsequently subjected to the plasma treatment, to further enhance the hydrophilicity of the scaffolds. The surface morphology, wettability and chemical composition of all PCL scaffolds were analyzed by scanning electron microscopy (SEM), water contact angle measurement, and X-ray photoelectron spectroscopy (XPS), respectively. It was found that the surface of the scaffolds turned from fairly smooth to highly rough after the hydrolysis and plasma treatment, particularly when both treatments were in use. The post-hydrolysis induced more surface roughness, compared to the pre-hydrolysis. In addition, the water contact angles on the scaffolds enormously reduced after the treatments; plasma treatment, however, showed a more prominent effect than the alkaline hydrolysis. Although expressing a zero-degree contact angle, the plasma-treated pre-HPCL scaffold was wetted more readily than the plasma-treated post-HPCL. These were in good agreement with the XPS results; interestingly, the plasma-treated pre-HPCL scaffold exhibited the greatest O/C atomic ratio among the PCL scaffolds. This indicated its highest extent of PCL chain oxidation, a degradation of ester groups into-COOH and-OH groups.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Manju Chembath ◽  
J. N. Balaraju ◽  
M. Sujata

Electropolishing was conducted on NiTi alloy of composition 49.1 Ti-50.9 Ni at.% under potentiostatic regime at ambient temperature using perchloric acid based electrolyte for 30 sec followed by passivation treatment in an inorganic electrolyte. The corrosion resistance and biocompatibility of the electropolished and passivated alloys were evaluated and compared with mechanically polished alloy. Various characterization techniques like scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were employed to analyze the properties of surface modified and mechanically polished alloys. Water contact angle measurements made on the passivated alloy after electropolishing showed a contact angle of 35.6°, which was about 58% lower compared to mechanically polished sample, implying more hydrophilicity. The electrochemical impedance studies showed that, for the passivated alloy, threefold increase in the barrier layer resistance was obtained when compared to electropolished alloy due to the formation of compact titanium oxide. The oxide layer thickness of the passivated samples was almost 18 times higher than electropolished samples. After 14 days immersion in Hanks’ solution, the amount of nickel released was 315 ppb which was nearly half of that obtained for mechanically polished NiTi alloy, confirming better stability of the passive layer.


2012 ◽  
Vol 626 ◽  
pp. 317-323 ◽  
Author(s):  
Rozana Mohd Dahan ◽  
Muhamad Naiman Sarip ◽  
Yap Seong Ling ◽  
Mohamad Hafiz Mohd Wahid ◽  
Adillah Nurashikin Arshad ◽  
...  

This study investigates the surface properties of plasma surface modified spin coated PVDF-TrFE (70/30) film using Atomic Force Microscopy (AFM), Water Contact Angle (WCA) and X-ray Photoelectron Spectroscopy (XPS). The surfaces of the spin coated PVDF-TrFE film were modified using 13.56 MHz rf Argon plasma. The exposure time of the charged particle PVDF-TrFE films were varied for 1, 3 and 5mins. Prior to modification, the average surface roughness obtained was 8.615nm, but upon modification, the surface roughness was found to increase to 12.466nm. The value of the contact angle of the modified film was reduced from 90o to 43o and the XPS analysis showed dehydrofluorination of PVDF-TrFE films surfaces. The improved in surface roughness and the increased in wettability of the modified film, resulted in good biocompatibility of the modified PVDF-TrFE thin films. This phenomenon has created interest in researchers for developing functional polymer used for applications in areas such are biomedical, bio-analytical assays, textile and even food industry.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Sign in / Sign up

Export Citation Format

Share Document