scholarly journals Comparative Analysis of the Mechanical Properties between the Fiber-Reinforced Composite and Zirconium Posts

PRILOZI ◽  
2015 ◽  
Vol 36 (3) ◽  
pp. 138-149
Author(s):  
Vesna Jurukovska-Shotarovska ◽  
Biljana Kapusevska

Abstract Objectives: To make a comparative analysis of the mechanical properties between FRC and zirconium posts Methods: The patients with FRC and zirconium posts were divided in two groups with three subgroups, each of them composed of 10 samples. Subgroup I with 1.2 mm; Subgroup II with 1.35 mm and Subgroup III with 1.5 mm post diameter. The fracture force, bending and tensile strength of each group were measured with Shimadzu Universal Testing Machine. Results: The fracture force for the first group measured in the first, second and third subgroup was 34.80900N; 67.15390N; 46.53100N and for the second group, first, second and third subgroup was 34.80900N; 46.53100N; 67.15390N correspondingly. The bending strength for the first group measured in the first, second and third subgroup was 401.4420N; 444.6425N; 333.6828N and for the second group, first, second and third subgroup was 307.9352N; 289.1030N; 304.1649N correspondingly. The tensile strength for the first group measured in the first, second and third subgroup was 5.442267N; 4.350545N; 2.943465N and for the second group, first, second and third subgroup was 4.224141N; 3.751466N; 3.168756N correspondingly. Conclusions: The longest diameter of the posts significantly increases the resistance to fracture in relation to the two smaller diameters. The larger diameter, the higher values of the bending strength, as well as the lowest values of the tensile strength of the material contribute to improved mechanical properties of the fiber and zirconium posts.

2012 ◽  
Vol 624 ◽  
pp. 264-268 ◽  
Author(s):  
Duo You Zhang ◽  
Peng Liu ◽  
Chun Fa Ouyoung ◽  
Qun Gao ◽  
Kang Sheng Zheng ◽  
...  

PNA012 is a new nucleating agent on polybutylene terephthalate. The effect of different dosage of PNA012 on crystallization and mechanical properties were investigated by means of differential scanning calorimetry, universal testing machine, melt flow indexer and vicat softening testing machine. It was revealed that the PNA012 could substantially accelerate the crystallization of PBT. Compared with the pure PBT,the crystallization temperature of PBT/PNA012 rises from 196.3 °C to 199.7 °C and crystallization degree from 34.2% to 39.9%. The tensile Strength of PBT/PNA012 is increased 9.7%. The Bending Strength has a rise of 9.3% and the heat distortion temperatures of PBT/PNA012 is increased from 115.07°C to 125.94°C.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


2015 ◽  
Vol 1 (1) ◽  
pp. 53
Author(s):  
Dian Noviyanti Agus Imam ◽  
Siti Sunarintyas ◽  
Nuryono Nuryono

Retainer dibutuhkan untuk membantu menstabilkan posisi gigi geligi selama proses reorganisasi jaringan periodontal berlangsung. Retainer FRC ortodonsi dikembangkan sebagai alternatif material estetika serta aman bagi pasien alergi terhadap nikel. E-glass fiber lebih sering digunakan sebagai retainer ortodonsi. Penelitian ini bertujuan untuk mengkaji pengaruh komposisi glass fiber non dental dan penambahan silane terhadap kekuatan geser FRC sebagai retainer ortodonsi. Subjek penelitian terdiri dari 9 kelompok perlakuan dengan 3 jenis glass fiber yang berbeda yaitu glass fiber non dental A (LT, Cina), B (CMAX, Cina) dan C (HJ, Cina). Masing-masing glass fiber diberi perlakuan yang bervariasi yaitu tanpa penambahan silane, penambahan silane 1x dan 2x. Subjek penelitian direndam dalam akuades dan disimpan pada suhu 37ºC selama 24 jam sebelum dilakukan uji kekuatan geser dengan menggunakan alat Universal Testing Machine. Hasil penelitian dianalisis variansi dua jalur dan post hoc Tukey untuk mengetahui perbedaan statistik masing-masing kelompok. Hasil penelitian menunjukkan bahwa glass fiber non dental A dengan penambahan 2x silane memiliki rerata kekuatan geser tertinggi (12,72±2,02 MPa) sedangkan glass fiber non dental B tanpa penambahan silane memiliki rerata kekuatan geser terendah (6,96±1,69 MPa). Terdapat perbedaan bermakna antara komposisi fiber maupun penambahan silane terhadap kekuatan geser FRC (p<0,05). Tidak terdapat perbedaan bermakna pada letak kegagalan FRC (p>0,05). Berdasarkan hasil penelitian dapat disimpulkan bahwa komposisi SiO2 dan Al2O3 yang tinggi pada glass fiber non dental serta penambahan silane dapat meningkatkan kekuatan geser FRC. The Effect of Non Dental Glass Fiber Composition and Silane Addition on The Shear Bond Strength of Fiber Reinforced Composite as An Orthodontic Retainer. Retainers are required to stabilize the position of the teeth to permit reorganization of periodontal tissue. FRC orthodontic retainer was developed as an alternative material aesthetic and safe for nickel allergic patients. E-glass fiber is commonly used as an orthodontic retainer. The purpose of this study was to assess the effect of non dental glass fiber composition and silanes addition on the shear bond strength of the FRC as an orthodontic retainer. This study consisted of 9 treatment groups with three different types of non dental glass fiber, namely non dental glass fiber A (LT, China), B (CMAX, China) and C (HJ, China). Each glass fiber was given a variation treatment, without silanes, one time and two times of silanes addition. All the samples were stored in distilled water at 37ºC for 24 hours and subsequently tested for shear strength by using Universal Testing Machine.The groups were submitted to two way ANOVA analysis of variance with Tukey post test to verify the statictical difference between groups. The results showed that a non dental glass fiber A with two times of silanes addition has the highest shear bond strength (12,72±2,02 MPa), meanwhile a non dental glass fiber B without silane addition has the lowest shear bond strength (6,96±1,69 MPa). There were significant differences between the composition of glass fiber and the addition of silane toward the shear bond strength of FRC (p<0,05). No significant differences in debonded locations of FRC (p>0,05). Based on the results of this study concluded that the composition of the high SiO2 and Al2O3 in the non dental glass fiber  and the silanes addition can increase the shear bond strength FRC.


2006 ◽  
Vol 7 (5) ◽  
pp. 10-17 ◽  
Author(s):  
Lippo V.J. Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan K. Garoushi

Abstract Aim The aim of this study was to determine the effect of short fiber volume fraction and fiber length on some mechanical properties of short fiber-reinforced composite (FRC). Methods and Materials Test specimens (2 x 2 x 25 mm3) and (9.5 x 5.5 x 3 mm3) were made from short random FRC and prepared with different fiber volumes (0%-22%) and fiber lengths (1-6 mm). Control specimens did not contain fiber reinforcement. The test specimens (n=6) were either dry stored or thermocycled in water (x10.000, 5 – 55°C) before loading (three-point bending test) according to ISO 10477 or statically loaded with a steel ball (Ø 3.0 mm) with a speed of 1.0 mm/min until fracture. A universal testing machine was used to determine the flexural properties and the load-bearing capacity. Data were analyzed using analysis of variance (ANOVA) (p=0.05) and a linear regression model. Results The highest flexural strength and fracture load values were registered for specimens with 22 vol% of fibers (330 MPa and 2308 N) and with 5 mm fiber length (281 MPa and 2222 N) in dry conditions. Mechanical properties of all test specimens decreased after thermocycling. ANOVA analysis revealed all factors were affected significantly on the mechanical properties (p<0.001). Conclusions By increasing the volume fraction and length of short fibers up to 5 mm, which was the optimum length, the mechanical properties of short FRC were improved. Citation Garoushi SK, Lassila LVJ, Vallittu PK. Short Fiber Reinforced Composite: The Effect of Fiber Length and Volume Fraction. J Contemp Dent Pract 2006 November;(7)5:010-017.


MECHANICAL ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Salman Salman ◽  
Ahmad Fadly

Fiber-reinforced composite core banana stems with additional filler of husk powder is another way to obtain the expected mechanical behavior of the composite. The aim of this study was to analyze the effect of fiber volume fraction content to density, bending strength and tensile strength of sandwich composite.   Preparation of composite was done by hand lay-up method. Composite material used by banana ketip  fiber and addition of husk powder with variation of fiber volume fraction were 7, 10, and 13 % where husk was constant at 5% with random fiber direction. Tests were conducted by referring to the density est standard (ASTM C 271), bending est (ASTM C 393) and tensile test (ASTM D3039).  The result showed that the greater volume fraction of banana fiber, the lower the density value and the lower the bending strength. Whereas the tensile strength tended to increase as the volume fraction was higher.


2021 ◽  
pp. 088532822098566
Author(s):  
Jinping Wang ◽  
Haixiang Zhang ◽  
Yangmeng Feng ◽  
Yang Sun ◽  
Ruina Ma ◽  
...  

Background As an excellent xenotransplant, the pig trachea can be decellularized and cryopreserved to reduce its immunogenicity. However, few reports are found on the changes of its mechanical properties after cryopreservation and decellularization. Objective To evaluate the structure and biomechanical properties in pig tracheal scaffolds resulting from decellularized and cryopreserved. Material and methods Twenty-five pig tracheal segments were separated into five groups: untreated (group A), only decellularized (group B), only cryopreserved (group C), decellularized after cryopreserved (group D) and cryopreserved after decellularized (group E). Tracheal segments were subjected to uniaxial tension or compression using a universal testing machine to determine structural biomechanical changes. Results It showed that there was no statistically significant difference in the tensile strength of the trachea in each group. The compressive strength of group B, C and D were same as the group A ( P > 0.05), while the group E was lower than that of the group A ( P < 0.05). Conclusions and significance: The histological examination of the decellularization after cryopreservation shows that the removal of epithelial cells and submucosal cells is more thorough, and the biomechanical structure of the trachea is better preserved. This proved to be a new method to prepare xenotransplantation of trachea graft.


2013 ◽  
Vol 300-301 ◽  
pp. 1289-1292
Author(s):  
Yu Zhi Jiang ◽  
Li Li Zhang ◽  
Zhong Yang Zhang ◽  
Li Hua Wang

magnesium hydroxide whiskers; ABS; mechanical properties Abstract: The magnesium hydroxide (MH) whiskers/ABS composites were prepared by melt-extrusion with whiskers as fillers. Zinc stearate was used as modifier to improve the compatibility of the composites. The mechanical properties of ABS enhanced by different cotents of magnesium hydroxide whiskers were tested by the RGT-10 universal testing machine. When the content of whiskers was 10%, The comprehensive mechanical properties of the composites were the best, the max load was 0.30KN, the elastic modulus was 0.16Gpa, the tensile strength was 20.11Mpa, the total elongation was 10.24%, the fracture strength was 2.05Mpa. The fracture morphology of the composites was analyzed by SEM, the higher contents of magnesium hydroxide whisker, the worse-distributed whisker in ABS matrix.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3542
Author(s):  
Maja Bilić-Prcić ◽  
Valentina Brzović Rajić ◽  
Ana Ivanišević ◽  
Ana Pilipović ◽  
Sevil Gurgan ◽  
...  

The purpose of this study was to evaluate the effects of the incorporation of hydroxyapatite (HA) derived from cuttlefish bone on the mechanical properties of glass ionomer cements (GIC). Fuji II LC and Fuji IX GP Extra (GC Corporation, Tokyo, Japan) were used in the study. There were four groups (n = 11–18) for each material: a group without the addition of HA particles and three groups modified by incorporation of 2, 5, and 10 wt% HA. The tests were performed on a universal testing machine (Shimadzu, Duisburg, Germany) and descriptive statistics, two-way analysis of variance (ANOVA) for the comparison of three mechanical properties, and one-way ANOVA for the comparison of different concentrations for each material were performed. Regarding the Fuji IX groups, compressive strength (CS) and flexural strength (FS) were highest in the group without HA particles added. The differences in CS between the Fuji IX group without HA particles and the Fuji IX groups with 2 wt% HA and 10 wt% HA were significant. The Fuji II 5 wt% HA group exhibited higher diametral tensile strength (DTS) and CS than other Fuji II groups, but not significantly. The Fuji II group, modified with 10 wt% HA, exhibited significantly higher FS than the Fuji II group without HA particles (p < 0.05). Porous HA incorporated into the Fuji IX groups had a significant impact on mechanical properties only in the Fuji IX 5 wt% HA group. Fuji II groups modified with 10 wt% HA showed the most favorable results with respect to FS.


2020 ◽  
Vol 36 ◽  
pp. 114-125
Author(s):  
Kanwal Jit Singh ◽  
Rohit Kumar ◽  
Ramratan

The wheat husk pulp epoxy resin composites were prepared by compression Molding Method and their physical and Mechanical Properties were studied by universal testing Machine. The composites were tested by tensile strength testing and impact strength tester. The content of Wheat husk pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. Composites have been fabricated using hand layup technique using a suitable mold developed in industry. All the sample have been tested in Universal testing machine as per ASTM standard for tensile strength and impact strength it is observed that composite with 35% wheat husk pulp is having highest tensile strength of 4mm (4.29MPa) and 8mm (6.31Mpa). The impact strength of Composite with 35% wheat husk pulp was highest than 35%to 45% wheat husk pulp.


2020 ◽  
pp. 152808372093957
Author(s):  
Chandrasekaran Paramasivam ◽  
Rameshbabu Venugopal

The main focus of automotive industry is on developing and applying new materials and technologies for enhancing the comfort and security levels in the vehicles. To fulfill this requirement high strength and high modulus fiber reinforced composite structures play an important role in the automotive industry. The novelty in this research work is that the composite panel made by 2 D woven fabrics by using Glass and Basalt fabric material composite structure by suitable incorporation of panel design which enhanced the mechanical properties. The blend proportion of Glass and Basalt fabric reinforcement was 100% Glass, 100% Basalt and 50:50 Glass/Basalt fabrics. Hand lay-up process was adopted to fabricate the composite panels. Different sets of panel were produce by varying the curing time, pressure. The resultant panels were analyzed for the mechanical properties such as Tensile strength, Flexural strength and Impact strength tests. From the analysis of results the panel made by using 100% Basalt fabric with 20 bar pressure and 15 minutes curing time showed a better tensile strength of 95 MPa, flexural strength of 29.91 MPa and impact strength of 12.50 MPa. Similarly, the results of 50:50 Glass/Basalt fibre with 30 bar pressure and 15 minutes curing time showed a better tensile strength of 94.83 MPa, flexural strength of 29.51 MPa and impact strength of 12.30 MPa. The outcome of the findings is that the mechanical properties of panel are directly proportional to pressure and time and blend type.


Sign in / Sign up

Export Citation Format

Share Document