Diatomite modified by TiO2 for adsorption of U(VI)

2018 ◽  
Vol 106 (9) ◽  
pp. 733-742 ◽  
Author(s):  
Ni Yuan ◽  
Peng Liu ◽  
Wangsuo Wu

Abstract Diatomite was modified with TiO2. The synthesized materials were characterized and used for removal of U(VI) from aqueous solutions. The influences of pH, contact time and temperature on U(VI) adsorption onto TiO2@diatomite were studied by batch technique, and X-ray photoelectron spectroscopy (XPS) was employed to analyze the experimental data. We compared the adsorption of U(VI) onto natural diatomite, TiO2 and TiO2@diatomite made by sol-gel method. The dynamic process showed that the adsorption of U(VI) onto TiO2@diatomite matched the pseudo-second-order kinetics model, and the adsorption of U(VI) was significantly dependent on pH values. Through simulating the adsorption isotherms by Langmuir, Freundlich and Dubini–Radushkevich (D–R) models, respectively, it could be seen that the adsorption patterns of U(VI) onto TiO2@diatomite were mainly controlled by surface complexation, and the adsorption processes were endothermic and spontaneous. The modification of diatomite by TiO2 shows a novel material for removing U(VI) from water environment for industrialized application.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2720
Author(s):  
Ting Liang ◽  
Lianfang Li ◽  
Changxiong Zhu ◽  
Xue Liu ◽  
Hongna Li ◽  
...  

Arsenic has become a global concern in water environment, and it is essential to develop efficient remediation methods. In this study, a novel adsorbent by loading cerium and manganese oxide onto wheat straw-modified biochar (MBC) was manufactured successfully aiming to remove arsenic from polluted water. Through scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), and other techniques, it was found the loading of cerium and manganese oxide on MBC played a significant role in As(V) adsorption. The results of the batch test showed that the adsorption of MBC followed the pseudo-second order kinetics and Langmuir equation. The adsorption capacity of MBC was 108.88 mg As(V)/g at pH = 5.0 (C0 = 100 mg/L, dosage = 0.5 g/L, T = 298 K) with considerable improvement compared to the original biochar. Moreover, MBC exhibited excellent performance over a wide pH range (2.0~11.0). Thermodynamics of the sorption reaction showed that the entropy (ΔS), changes of enthalpy (ΔH) and Gibbs free energy (ΔG), respectively, were 85.88 J/(moL·K), 22.54 kJ/mol and −1.33 to −5.20 kJ/mol at T = 278~323 K. During the adsorption, the formation of multiple complexes under the influence of its abundant surface M-OH (M represents the Ce/Mn) groups involving multiple mechanisms that included electrostatic interaction forces, surface adsorption, redox reaction, and surface complexation. This study indicated that MBC is a promising adsorbent to remove As(V) from polluted water and has great potential in remediating of arsenic contaminated environment.


2018 ◽  
Vol 10 (11) ◽  
pp. 4250 ◽  
Author(s):  
Shuang Xu ◽  
Weiguang Yu ◽  
Sen Liu ◽  
Congying Xu ◽  
Jihui Li ◽  
...  

A low-cost biochar was prepared through slow pyrolysis of banana pseudostem biowaste at different temperatures, and characterized by surface area and porosity analysis, scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was shown that the biochar prepared at low pyrolysis temperature was rich in oxygen-containing groups on the surface. Adsorption experiments revealed that the biochar prepared at 300 °C (BB300) was the best adsorbent for Cr(VI) with 125.44 mg/g maximum adsorption capacity at pH 2 and 25 °C. All the adsorption processes were well described by pseudo-second-order and Langmuir models, indicating a monolayer chemiadsorption. Furthermore, it was demonstrated that adsorption of Cr(VI) was mainly attributed to reduction of Cr(VI) to Cr(III) followed by ion exchange and complexation with the biochar.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruna Teixeira da Fonseca ◽  
Eliane D’Elia ◽  
José Márcio Siqueira Júnior ◽  
Sanair Massafra de Oliveira ◽  
Kelly Leite dos Santos Castro ◽  
...  

AbstractThe SiO2/TiO2/Nb2O5 material was set by the sol–gel method and was characterized by several techniques through thermogravimetric, spectroscopic, and textural analyzes. For the two synthesized materials, the specific surface area was 350.0 and 494.0 m2 g−1 (SiTiNb-A and SiTiNb-B, respectively). An enhance of the crystalline order with the temperature increase of the thermal treatment was observed. Through X-ray Photoelectron Spectroscopy analysis, the binding energy values for the Ti 2p and Nb 3d levels showed the insertion of Ti and Nb atoms in the silica matrix. The Electron Dispersive Spectroscopy analyses also confirmed the high dispersion of the metals presented on the materials surface. The Thermogravimetric Analysis showed weight loss for the of 37.6% (SiTiNb-A) and 29.7% (SiTiNb-B). The presence of the crystalline phases TiO2-anatase and monoclinic-Nb2O5 in the materials was confirmed through the data obtained by association of powder X-ray Diffraction and FT-Raman. Values obtained from optical band-gap aimed the dependence of the oxides concentration and the calcination temperature. Finally, the pyridine adsorption studies have indicated the presence of Lewis and Brønsted acid sites.


2013 ◽  
Vol 69 (3) ◽  
pp. 612-621 ◽  
Author(s):  
Ting-guo Yan ◽  
Li-juan Wang

A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe3O4 particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe3O4/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g−1, which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe3O4/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g−1, respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe3O4/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1914
Author(s):  
Viviana Palos-Barba ◽  
Cecilia Lugo-Nabor ◽  
Rodrigo R. Velázquez-Castillo ◽  
Dora Alicia Solís-Casados ◽  
Carmen L. Peza-Ledesma ◽  
...  

Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption–desorption at 77 K by Specific Brunauer–Emmett–Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kangqiang Huang ◽  
Li Chen ◽  
Jianwen Xiong ◽  
Meixiang Liao

The Fe-N co-doped TiO2nanocomposites were synthesized by a sol-gel method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). Then the photocatalytic inactivation of Fe-N-doped TiO2on leukemia tumors was investigated by using Cell Counting Kit-8 (CCK-8) assay. Additionally, the ultrastructural morphology and apoptotic percentage of treated cells were also studied. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited in groups treated with TiO2nanoparticles and the photocatalytic activity of Fe-N-TiO2was significantly higher than that of Fe-TiO2and N-TiO2, indicating that the photocatalytic efficiency could be effectively enhanced by the modification of Fe-N. Furthermore, when 2 wt% Fe-N-TiO2nanocomposites at a final concentration of 200 μg/mL were used, the inactivation efficiency of 78.5% was achieved after 30-minute light therapy.


Sign in / Sign up

Export Citation Format

Share Document