Purification of liquid scintillation waste from binding radionuclides using different adsorbents

2020 ◽  
Vol 108 (11) ◽  
pp. 879-887
Author(s):  
Maha A. Youssef ◽  
Hoda E. Rizk ◽  
Mohamed F. Attallah

AbstractThe quantity of liquid organic radioactive wastes produced by the use of radioactive materials in nuclear research facilities is small compared to aqueous radioactive waste, but a special and low-cost treatment method is needed. Here we investigated the adsorption performance of five materials, namely: KU-2 resin, bentonite, charcoal (M&S) and clay adsorbents for the successful removal of 90Sr/90Y from liquid scintillation cocktail waste. The batch adsorption technique (influence of pH, contact time, and temperature), sequential, and column technique were investigated. The efficiency of these adsorbents for the removal of 90Sr/90Y is in this order, resin > bentonite > clay with removal efficiency 90 ± 5.2, 68 ± 3.25, and 65 ± 5.3%, respectively. While charcoal has lower affinity for the sorption processes. Purification of liquid scintillation (LS) cocktail by separation of 90Sr/90Y was successfully carried out by packed column with KU-2 resin. The exhausted loaded column with 90Sr/90Y is successfully regenerated by 25 mL, 1 M HNO3. Characterizations of the original and the purified LS cocktail were carried out using FTIR analysis. The efficiency of the purified liquid scintillation waste (LSW) for the determination of radionuclide is about 62.67 ± 4.8.

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 721 ◽  
Author(s):  
Abigail Jordan ◽  
Rachel Hill ◽  
Adrienne Turner ◽  
Tyrone Roberts ◽  
Sean Comber

The river Teign in Devon has come under scrutiny for failing to meet environmental quality standards for ecotoxic metals due to past mining operations. A disused mine known as Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the river. Recently, studies have been focused on the remediation of such mine sites using low-cost treatment methods to help reduce metal loads to the river downstream. This paper explores the metal removal efficiency of red mud, a waste product from the aluminium industry, which has proven to be an attractive low-cost treatment method for adsorbing toxic metals. Adsorption kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 h when red mud is applied in pelletized form. Further, it highlights the potential of biochar, another effective adsorbent observed to remove >90% Zn using agricultural feedstock. Compliance of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable fractions of Zn to assess if levels are of environmental concern. By applying a real-world application model, this study reveals that compressed pellets and agricultural biochar offer an effective, low-cost option to reducing metal concentrations and thus improving the quality of the river Teign.


Author(s):  
Gharde B. D. ◽  
Gharde A. D.

Concentration of water supplies with metals is constant area of concern naturally an international. The challenge to remediate hazardous metals containing waste stream from present formal mining operation, industrial sites and ground water is immersed. Adsorption has proved to be an accelerate way to treat industrial waste effluents. The heavy metals renders the water unsuitable for drinking and also higher toxic to human being. Removal of these material is therefore essential. The studies pertaining to the use of inexpensive agro based adsorbents, such as tree bark, saw dust, Corn cob, straw and fly ashes for heavy metals ions has been investigated using Mangifeara indica substrate through batch adsorption studies. Result obtained are quite encouraging, batch adsorption studies have shown that removal of metal ions is dependent upon process parameters like contact time, temperature, metal ions concentration, dosage and pH. The maximum removal of Co2+ to the extent of has been achieved at pH 4 to 6 in 30 min in the concentration range 30 to 90 mg/liter. The use of packed column adsorption has been investigated at the optimum condition, to study the feasibility of the process s for application in small scale industries.


Author(s):  
Abigail Jordan ◽  
Rachel Hill ◽  
Adrienne Turner ◽  
Tyrone Roberts ◽  
sean Comber

The river Teign in Devon has come under scrutiny for failing to meet Environmental Quality Standards for ecotoxic metals due to past mining operations. A disused mine known as Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the river. Recently, studies have been focused on the remediation of such mine sites using low-cost treatment methods to help reduce metal loads to the river downstream. Red mud is a waste product from the aluminium industry, the utilization of this resource has proven an attractive low-cost treatment method for adsorbing toxic metals. Adsorption kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 hours when red mud is applied in pelletized form. Biochar is another effective adsorbent with the potential to remove >90% Zn using agricultural feedstock. Compliance of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable fractions of Zn to assess if levels are of environmental concern. By applying a Real-World Application Model, this study reveals that compressed pellets and agricultural biochar offer an effective, low-cost option to reducing metal concentrations and thus improving the quality of the river Teign.


Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Lavane Kim ◽  
Nguyen Truong Thanh ◽  
Pham Van Toan ◽  
Huynh Vuong Thu Minh ◽  
Pankaj Kumar

Because of its threat to the quality of freshwater resources and human health, arsenic (As) pollution is important to scientific communities and policymakers around the world. The Mekong Delta, Vietnam, is one hotspot of As pollution. Its risk assessment of different environmental components has been well documented; however, very few studies focus on As removal techniques. Considering this information gap, this study aimed to investigate the performance of an innovative and low-cost treatment system using Fe(III)-oxyhydroxide (FeOOH) coated sand to remove As(III) from aqueous solution. Batch and column experiments were conducted at a laboratory scale in order to study removal kinetics and efficiency. Experimental results indicated that the adsorption isotherm of As(III) on FeOOH coated sand using Langmuir and Freundlich models have high regression factors of 0.987 and 0.991, respectively. The batch adsorption experiment revealed that contact time was approximately 8 h for rough saturation (kinetic test). The concentration of As(III) in effluents at flow rates of 0.6 L/h, 0.9 L/h, and 1.8 L/h ranged from 1.1 µg/L to 1.7 µg/L. Results from this study indicated that FeOOH coated sand columns were effective in removing As(III) from water, with a removal efficiency of 99.1%. Ultimately, FeOOH coated sand filtration could be a potential treatment system to reduce As(III) in the domestic water supply in remote areas of the Vietnamese Mekong Delta.


2017 ◽  
Vol 68 (8) ◽  
pp. 1908-1913 ◽  
Author(s):  
Ali Benlamoudi ◽  
Aeslina Abdul Kadir ◽  
Mihail Aurel Titu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandu

In recent years, tremendous researches have been carried out for solid waste treatment using the solidification/stabilization (S/S) method incorporated with agricultural wastes after the incineration process. These researches, although they showed efficient results, but they may be expensive due to the incineration procedure cost. In the current research, the treatment of lead (Pb) contaminated soil was studied by the incorporation of sugarcane bagasse in its fibrous state into the S/S method. Chemical properties of the materials used were determined by X-Ray Fluorescence (XRF) test. Some mechanical tests like density, water absorption and compressive strength were conducted in order to meet the regulatory limits for disposing the treated waste. Some leaching tests were also conducted, to measure the leachability of lead (Pb) from the matrices. Solidification/stabilization was found as an effective method that was able to reduce more than 99% of leachability of Pb from polluted soil. Moreover, this method can incorporate until 10% of sugarcane bagasse into the matrices. Although incorporation of sugarcane bagasse up to 10% decreases the strength of the samples and increase the leachability of Pb, but they still fit to the standard. Incorporation of sugarcane bagasse waste in its fibrous state into the solidification/stabilization method may provide an alternative low cost treatment method for Pb polluted soils and may eliminate huge amounts of this waste from the environment.


2020 ◽  
Author(s):  
Regina Filemon Irunde ◽  
◽  
Julian Ijumulana ◽  
Julian Ijumulana ◽  
Julian Ijumulana ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Theresa C. Umeh ◽  
John K. Nduka ◽  
Kovo G. Akpomie

AbstractDeterioration in soil–water environment severely contributed by heavy metal bioavailability and mobility on soil surface and sub-surface due to irrational increase in wastewater discharge and agrochemical activities. Therefore, the feasibility of adsorption characteristics of the soil is paramount in curbing the problem of micropollutant contamination in the farming vicinity. Soil from a farming site in a populated area in Enugu, Nigeria was collected and tested to measure the lead and cadmium contents using atomic absorption spectrophotometer (AAS). The adsorption potency of the ultisol soil was estimated for identifiable physicochemical properties by standard technique. The mean activity concentration of Pb2+ and Cd2+ was 15.68 mg/kg and 3.01 mg/kg. The pH, temperature, metal concentration and contact time adsorptive effect on the Pb2+ and Cd2+ uptake was evaluated by batch adsorption technique. The Langmuir, Freundlich and Temkin models were fitted into equilibrium adsorption data and the calculated results depict a better and satisfactory correlation for Langmuir with higher linear regression coefficients (Pb2+, 0.935 and Cd2+, 0.971). On the basis of sorption capacity mechanism of the soil, pseudo-second-order model best described the kinetics of both metal ions retention process. The results of the present study indicated that the soil being a low cost-effective adsorbent can be utilized to minimize the environmental risk impact of these metal ions.


Author(s):  
Dana A. Da’ana ◽  
Nabil Zouari ◽  
Mohammad Y. Ashfaq ◽  
Mohammed Abu-Dieyeh ◽  
Majeda Khraisheh ◽  
...  

Abstract Purpose of Review This paper reviews various low-cost treatment techniques such as adsorption, permeable reactive barrier, and biological techniques for the simultaneous removal of chemical and microbial contaminants from groundwater and discusses treatment mechanisms of different treatment techniques. This paper also discusses the challenges of groundwater treatment, how to choose the appropriate treatment technique, and cost analysis of groundwater treatment. Recent Findings Various treatment technologies have been used for the treatment of groundwater: physical, chemical, and biological technologies with different success rates. In the literature, various adsorbents have been successfully synthesized from low-cost and environmentally friendly materials. Adsorption is considered an efficient treatment technique for the removal of both toxic elements and pathogens by utilizing different adsorbents. For example, the nanostructures of MgO with a BET surface area of up to 171 m2/g obtained a very high adsorption capacity of 29,131 mg/g for fluoride ions in water, while the incorporation of iron in activated carbon has improved its adsorption capacity to 51.3 mg/g for arsenic. Moreover, certain adsorbents have shown the capability to remove 99% of the rotavirus and adenovirus from groundwater. Summary Groundwater resources are contaminated with toxic metals and pathogens. Therefore, water treatment technologies should be evaluated for their efficiency to remove such contaminants. Determination of the most cost-effective and efficient treatment technique is not an easy task and requires the understanding of various aspects such as the contaminants present in water, the reuse options considered, and cost analysis of the treatment technique.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1312
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The contamination of surface and groundwater with phosphate originating from industrial and household wastewater remains a serious environmental issue in low-income countries. Herein, phosphate removal from aqueous solutions was studied using low-cost volcanic rocks such as pumice (VPum) and scoria (VSco), obtained from the Ethiopian Great Rift Valley. Batch adsorption experiments were conducted using phosphate solutions with concentrations of 0.5 to 25 mg·L−1 to examine the adsorption kinetic as well as equilibrium conditions. The experimental adsorption data were tested by employing various equilibrium adsorption models, and the Freundlich and Dubinin-Radushkevich (D-R) isotherms best depicted the observations. The maximum phosphate adsorption capacities of VPum and VSco were calculated and found to be 294 mg·kg−1 and 169 mg·kg−1, respectively. A pseudo-second-order kinetic model best described the experimental data with a coefficient of correlation of R2 > 0.99 for both VPum and VSco; however, VPum showed a slightly better selectivity for phosphate removal than VSco. The presence of competitive anions markedly reduced the removal efficiency of phosphate from the aqueous solution. The adsorptive removal of phosphate was affected by competitive anions in the order: HCO3− >F− > SO4−2 > NO3− > Cl− for VPum and HCO3− > F− > Cl− > SO4−2 > NO3− for VSco. The results indicate that the readily available volcanic rocks have a good adsorptive capacity for phosphate and shall be considered in future studies as test materials for phosphate removal from water in technical-scale experiments.


Sign in / Sign up

Export Citation Format

Share Document