Applications of biocomposite materials based on natural fibers from renewable resources: a review

2016 ◽  
Vol 23 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Kurki Nagaraj Bharath ◽  
Satyappa Basavarajappa

AbstractBiocomposites (natural fiber composites) from local and renewable resources offer significant sustainability; industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Considerable growth has been seen in the use of biocomposites in the domestic sector, building materials, aerospace industry, circuit boards, and automotive applications over the past decade, but application in other sectors until now has been limited. Nevertheless, with suitable development, the potential exists for biocomposites to enter new markets and thus stimulate an increase in demand. Many types of natural fibers have been investigated with polymer matrices to produce composite materials that are competitive with synthetic fiber composites which require special attention. The agricultural wastes can be used to prepare fiber-reinforced polymer composites for commercial use and have marketing appeal. The growing global environmental and social concern, high percentage of exhaustion of petroleum resources, and new environmental regulations have forced the search for new composites, compatible with the environment. Many references to the current status of research work on the applications of biocomposites are cited in this review.

2017 ◽  
Vol 867 ◽  
pp. 29-33 ◽  
Author(s):  
A. Saravana Kumar ◽  
P. Maivizhi Selvi ◽  
L. Rajeshkumar

Natural fiber composites are presently replacing the synthetic fiber in many fields. The present research work study is an attempt to manufacture and test the sisal/banana fiber reinforced polymer composites. Composite have been manufactured using banana and sisal fiber along with epoxy resin as reinforcement. With these composites drilling has been carried out to study the factors and combination of factors that influence the delamination of drilled unidirectional sisal-banana fiber reinforced composites. Drilling experiments were performed based on the L9-Taguchi method. Delamination factor evaluated for the selected parameters spindle speed, feed and diameter of the drill tool with the help of signal to noise ratio, ANOVA analysis and to obtain the conditions for minimum delamination.


2019 ◽  
pp. 089270571988909 ◽  
Author(s):  
Vardaan Chauhan ◽  
Timo Kärki ◽  
Juha Varis

Interest in natural fiber-reinforced polymer (NFRP) composites is growing rapidly in the transportation sector, especially as a replacement material for metals and synthetic fiber composites. The heightened interest is directly related to a need to produce lightweight and fuel efficient vehicles. Further, stringent legislation and greater environmental awareness is forcing transportation industries to select materials with a smaller carbon footprint. In such a context, NFRP composite materials are a good choice due to their low cost, low environmental impact, and relatively equivalent properties to metals and other composites. Most prior studies have examined commodity plastics such as polypropylene, polyethylene, and epoxy as the primary polymer matrix in NFRP composites and little work has addressed engineering plastics. Engineering plastics, which includes polycarbonate, polyamides, and polystyrene, are high performance thermoplastics with superior properties but relatively higher cost than commodity plastics. It has been claimed that even after recycling, engineering plastics properties are superior to those of commodity plastics, and thus, utilization of recycled engineering plastic in NFRP composites can help reduce waste and lower composite material costs. The aim of this review article is to explore the current status of engineering plastics reinforced with natural fibers such as flax, hemp, jute, and sisal and to examine their use in automotive, aerospace, and maritime applications. Properties and processing techniques of engineering plastics reinforced with natural fibers are also studied.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 864
Author(s):  
Ayyappa Atmakuri ◽  
Arvydas Palevicius ◽  
Lalitnarayan Kolli ◽  
Andrius Vilkauskas ◽  
Giedrius Janusas

In recent years, natural fiber reinforced polymer composites have gained much attention over synthetic fiber composites because of their many advantages such as low-cost, light in weight, non-toxic, non-abrasive, and bio-degradable properties. Many researchers have found interest in using epoxy resin for composite fabrication over other thermosetting and thermoplastic polymers due to its dimensional stability and mechanical properties. In this research work, the mechanical and moisture properties of Caryota and sisal fiber-reinforced epoxy resin hybrid composites were investigated. The main objective of these studies is to develop hybrid composites and exploit their importance over single fiber composites. The Caryota and sisal fiber reinforced epoxy resin composites were fabricated by using the hand lay-up technique. A total of five different samples (40C/0S, 25C/15S, 20C/20S, 15C/25S, 0C/40S) were developed based on the rule of hybridization. The samples were allowed for testing to evaluate their mechanical, moisture properties and the morphology was studied by using the scanning electron microscope analysis. It was observed that hybrid composites have shown improved mechanical properties over the single fiber (Individual fiber) composites. The moisture studies stated that all the composites were responded to the water absorption but single fiber composites absorbed more moisture than hybrid composites.


Fibers ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 62
Author(s):  
Mike R. Bambach

Recent decades have seen substantial interest in the use of natural fibers in continuous fiber reinforced composites, such as flax, jute and hemp. Considering potential applications, it is of particular interest how natural fiber composites compare to synthetic fiber composites, such as glass and carbon, and if natural fibers can replace synthetic fibers in existing applications. Many studies have made direct comparisons between natural and synthetic fiber composites via material coupon testing; however, few studies have made such direct comparisons of full structural members. This study presents compression tests of geometrically identical structural channel sections fabricated from fiber-epoxy composites of flax, jute, hemp, glass and carbon. Glass fiber composites demonstrated superior tension material coupon properties to natural fiber composites. However, for the same fiber mass, structural compression properties of natural fiber composite channels were generally equivalent to, or in some cases superior to, glass fiber composite channels. This indicates there is substantial potential for natural fibers to replace glass fibers in structural compression members. Carbon fiber composites were far superior to all other composites, indicating little potential for replacement with natural fibers.


Author(s):  
Pradeep L. Menezes ◽  
Pradeep K. Rohatgi ◽  
Michael R. Lovell

In recent years, significant academic and industrial research and development has explored novel methods of creating green and environmentally friendly materials for commercial applications. Natural fibers offer the potential to develop lower cost products with better performance, sustainability, and renewability characteristics than traditional materials, particularly in the automotive industry. In this respect, natural fiber reinforced polymer composites have emerged as an environmentally friendly and cost-effective option to synthetic fiber reinforced composites. Hence, in this study, a review of the tribological behavior of natural fiber reinforced polymer composites has been undertaken to better understand their usability for various automotive applications.


2021 ◽  
Vol 11 (1) ◽  
pp. 915-921
Author(s):  
Balsam H. Abed ◽  
Ali A. Battawi

Abstract Renewable resources are used to create useful, biologically sustainable materials. It has the potential to minimize waste while also challenging existing research and developments. Several researchers have concentrated their efforts on natural fiber composites. Natural fibers include plant, mineral, and animal fibers. In this project fish scales, a bio-waste, were used as a reinforcing agent in polyester/polystyrene for the fabrication of composite materials in the different weight fractions of 0, 6, 7, 9, and 11%, at a constant load of 1 N and temperature of 20 and 26°C. The hand layup technique was used to create the fabrication setup for composite materials. The creep behavior, modulus of elasticity, and stress were studied experimentally.


2020 ◽  
Vol 9 (1) ◽  
pp. 853-875 ◽  
Author(s):  
Mohamad Alhijazi ◽  
Qasim Zeeshan ◽  
Zhaoye Qin ◽  
Babak Safaei ◽  
Mohammed Asmael

AbstractNatural fiber composites (NFCs) also termed as biocomposites offer an alternative to the existing synthetic fiber composites, due to their advantages such as abundance in nature, relatively low cost, lightweight, high strength-to-weight ratio, and most importantly their environmental aspects such as biodegradability, renewability, recyclability, and sustainability. Researchers are investigating in depth the properties of NFC to identify their reliability and accessibility for being involved in aircrafts, automotive, marine, sports’ equipment, and other engineering fields. Modeling and simulation (M&S) of NFCs is a valuable method that contributes in enhancing the design and performance of natural fibers composite. Recently many researchers have applied finite element analysis to analyze NFCs’ characteristics. This article aims to present a comprehensive review on recent developments in M&S of NFCs through classifying the research according to the analysis type, NFC type, model type, simulation platform and parameters, and research outcomes, shedding the light on the main applicable theories and methods in this area, aiming to let more experts know the current research status and also provide some guidance for relevant researches.


2016 ◽  
Vol 24 (7) ◽  
pp. 555-566 ◽  
Author(s):  
N. Venkatachalam ◽  
P. Navaneethakrishnan ◽  
R. Rajsekar ◽  
S. Shankar

India as a tropical agricultural country has great potential to develop and use fiber derived from agricultural waste. Natural fibers are an important by-product of extraction process and they can be used as reinforcement in composite products. Composites are developed with unsaturated polyester resin as the matrix with natural fiber as the reinforcement. The results show decreased strength and modulus with increasing the fiber volume fraction. This indicates ineffective stress transfer between the fiber and matrix due to lower adhesion. It is necessary to bring a hydrophobic nature to the fibers by suitable chemical treatments in order to develop composites with improved mechanical properties. In these review papers, different types of natural fibers are subjected to a variety of physical and chemical treatments. The types of treatments studied in these papers include Physical treatments such as beating and heating, and chemical treatments like alkalization, silane, acetylation and benzoylation. The effects of these treatments on mechanical properties of the composites are analyzed. Fractures are analyzed by using the scanning electron microscopy (SEM). Analysis by FTIR and DMA showed that physico-chemical changes of surfaces of treated natural fibers. In general, treatments to the fibers can significantly improve adhesion and reduce water absorption, thereby improving mechanical properties of the composites. The purpose of this review paper is to summarize the research work done on various pretreatments in the preparation of natural fiber reinforced composites and to highlight the potential use of natural fiber reinforced polymer composites in industry and its potential to replace the synthetic fiber composite and conventional materials in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


Sign in / Sign up

Export Citation Format

Share Document