A semiotic analysis of multiple systems of logic: using tagmemic theory to assess the usefulness and limitations of formal logics, and to produce a mathematical lattice model including multiple systems of logic

Semiotica ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Vern Poythress

Abstract Tagmemic theory as a semiotic theory can be used to analyze multiple systems of logic and to assess their strengths and weaknesses. This analysis constitutes an application of semiotics and also a contribution to understanding of the nature of logic within the context of human meaning. Each system of logic is best adapted to represent one portion of human rationality. Acknowledging this correlation between systems and their targets helps explain the usefulness of more than one system. Among these systems, the two-valued system of classical logic takes its place. All the systems of logic can be incorporated into a complex mathematical model that has a place for each system and that represents a larger whole in human reasoning. The model can represent why tight formal systems of logic can be applied in some contexts with great success, but in other contexts are not directly applicable. The result suggests that human reasoning is innately richer than any one formal system of logic.

2019 ◽  
Vol 28 (1) ◽  
pp. 19-27
Author(s):  
Ja. O. Petik

The connection of the modern psychology and formal systems remains an important direction of research. This paper is centered on philosophical problems surrounding relations between mental and logic. Main attention is given to philosophy of logic but certain ideas are introduced that can be incorporated into the practical philosophical logic. The definition and properties of basic modal logic and descending ones which are used in study of mental activity are in view. The defining role of philosophical interpretation of modality for the particular formal system used for research in the field of psychological states of agents is postulated. Different semantics of modal logic are studied. The hypothesis about the connection of research in cognitive psychology (semantics of brain activity) and formal systems connected to research of psychological states is stated.


One of the approaches to the development of a complex mathematical model of a production system is considered. Keywords mathematical model; target subsystem; quality criterion; controlling parameter; hierarchical structure


Author(s):  
Gennadiy Kryzhevich ◽  
Anatoliy Filatov

This paper studies marine structures made of steels and light alloys and exposed to cyclic operational loads. Stress-strain parameters of their joints were taken from mathematical simulations of loads and strains or from actual strain gauging data. The aim of this study is to develop recommendations on fatigue strength calculations: specifically, how to quite the complex mathematical model of multi-axial loading at critical structural points with fast fatigue wear in favour of a simplified stressstrain state description based on optimal assignment of design parameters (stresses) in fatigue failure criteria. Preferability of this approach depends on case-specific requirements to calculation accuracy and timeframes. Uniaxial description of stressed state instead of the three-axial one enables much faster calculation with acceptable drop in accuracy.


2016 ◽  
Author(s):  
Falk Lieder ◽  
Tom Griffiths

Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by learning a predictive model of each strategy’s performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decision-making to problem-solving and arithmetic by capturing the variability of people’s strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and four new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the two poles of the debate about human rationality by integrating heuristics and biases with learning and rationality.


Author(s):  
Bakhtiyar Ismailov ◽  
Zhanat Umarova ◽  
Khairulla Ismailov ◽  
Aibarsha Dosmakanbetova ◽  
Saule Meldebekova

<p>At present, when constructing a mathematical description of the pyrolysis reactor, partial differential equations for the components of the gas phase and the catalyst phase are used. In the well-known works on modeling pyrolysis, the obtained models are applicable only for a narrow range of changes in the process parameters, the geometric dimensions are considered constant. The article poses the task of creating a complex mathematical model with additional terms, taking into account nonlinear effects, where the geometric dimensions of the apparatus and operating characteristics vary over a wide range. An analytical method has been developed for the implementation of a mathematical model of catalytic pyrolysis of methane for the production of nanomaterials in a continuous mode. The differential equation for gaseous components with initial and boundary conditions of the third type is reduced to a dimensionless form with a small value of the peclet criterion with a form factor. It is shown that the laplace transform method is mainly suitable for this case, which is applicable both for differential equations for solid-phase components and calculation in a periodic mode. The adequacy of the model results with the known experimental data is checked.</p>


2017 ◽  
Vol 31 (25) ◽  
pp. 1745009
Author(s):  
Jean-Francois Geneste ◽  
Jenny Darja Vinko

Starting from Cook’s model [D. N. Cook, Models of the Atomic Nucleus (Springer, Berlin, 2006)], we proposed a non-Archimedean approach to show that we can transform his purely mathematical model into a physical one. In the first stage, we kept the f.c.c. lattice model surrounded by a vapor phase from which we can only extract “symmetric” entities (quantons?) which are the electrons. This in our opinion gives a much better global view of what the atom could be. When assembling the nuclei into a lattice, there is reciprocal influence between the vapor phase and the lattice. Consequently, superconductivity occurs when temperature decrease brings to freezing the vapor phase and when the “crystallization” of the vapor phase gives some symmetric tiling of the volume around the lattice, thanks to Curie’s theorem. Looking for high temperature superconductivity therefore is equivalent to finding symmetric crystallization of the vapor phase. In that sense this pleads for the use of heterogeneous materials in the “crystal grid” and the case being play with impurities. We do not see any limit, thanks to our model, for high and even very high temperatures for superconductivity.


Author(s):  
Alexander Babin ◽  
Alexey Kornaev ◽  
Alexey Rodichev ◽  
Leonid Savin

Research in the field of active fluid-film bearing has been recently getting more and more attention, integration of control systems becoming one of the most promising means of enhancement of rotor-bearing nodes' characteristics. It has been determined that the vast majority of papers published on active fluid-film bearing only consider radial bearings, and very few focus on thrust bearings. This lack of attention along with the obvious necessity to fill the said gap has triggered the present research. In cases of rotor machines that experience extensive axial loading due to various reasons, e.g. various turbine engines (aero and spacecraft) and hydraulic pumps (crude oil extraction facilities), such research could prove the feasibility of application of a control system to significantly increase the performance of the whole machine. Moreover, extensive wear during start up and shut down could be eliminated by means of rotor position control, thus life time of a rotor-bearing system could be significantly increased. The present paper features a complex mathematical model of an active thrust fluid-film bearing with a central feeding orifice, a developed test rig designed to verify the presented mathematical model allowing a series of numerical tests to be carried out. Numerical studies focus on the hypothesis of a possibility to use active control in thrust bearings to decrease power loss due to friction and extensive axial vibrations by means of identification of an energy efficient area of axial gaps based on the lubrication regime and its maintenance by means of application of controlled lubrication principles.


2014 ◽  
Vol 10 ◽  
pp. 236-243 ◽  
Author(s):  
Viacheslav A. Chuzlov ◽  
Nikita V. Chekantsev ◽  
Emilia D. Ivanchina

Sign in / Sign up

Export Citation Format

Share Document