Expression levels of BAP1, OGT, and YY1 genes in patients with eyelid tumors

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayca Tas ◽  
Erkan Gumus ◽  
Esma Ozmen ◽  
Haydar Erdogan ◽  
Yavuz Silig

Abstract Objectives The aim of this study was to investigate BAP1, OGT and YY1 genes and protein levels in 12 samples (8 males, 4 females) of eyelid tumor tissue with basal cell carcinoma (BCC) and 12 normal control subjects (8 males, 4 females). Methods The expression levels of these genes were determined with RT-PCR and the protein levels and expression using ELISA and IHC methods, respectively. Results In RT-PCR analysis, statistically significant upregulated expression was determined of 1.84-fold of BAP1, 2.85-fold of OGT and 3.06-fold of YY1 genes (p < 0.05). In the patient group, compared to the control group, there was a similar statistically significant strong correlation between the proteins (BAP1 and YY1; r = 0.850, BAP1 and OGT; r = 0.811, OGT and YY1; r = 0.755) (p < 0.05). In the ELISA and IHC analysis methods, a significant increase in BAP1 and YY1 protein expression levels was observed compared to the control group (p < 0.05). Conclusions The study results demonstrated that BAP1 and YY1 genes and protein levels were upregulated in eyelid tumor tissue with BCC.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yue Sun ◽  
Yuzhen Liang ◽  
Zhengming Li ◽  
Ning Xia

Liraglutide is a glucagon-like peptide-1 analogue widely used in the treatment of type 2 diabetes mellitus. However, the effects of liraglutide on osteoblast proliferation and differentiation in MC3T3-E1 cells have not been fully elucidated. In the present study, the promoting effects of liraglutide were investigated in MC3T3-E1 cells. The results indicated that cell viability was affected following the treatment of the cells with different concentrations of liraglutide (0, 10, 100, and 1000 nM) at different time periods of culture (24, 48, and 72 h). Moreover, the activity levels of alkaline phosphatase and the number of mineralized nodules in MC3T3-E1 cells were significantly increased following treatment with 100 nM liraglutide. The mRNA and protein levels of Col-1, OPG, and OCN in MC3T3-E1 cells were also markedly increased following 100 nM liraglutide treatment compared with those of the control group. The expression levels of the ERK5 signaling pathway key proteins (MEK5, p-ERK5, ERK5, and NUR77) were increased following liraglutide treatment in MC3T3-E1 cells, and the gene expression levels of the ERK5 signaling pathway were also elevated. Moreover, the ERK5 inhibitor XMD8-92 significantly decreased the expression levels of p-ERK5 and NUR77 as well as the proliferation of osteoblasts. However, these changes could be rescued by liraglutide to some extent. Therefore, these results revealed that liraglutide may promote osteoblastic differentiation and proliferation in MC3T3-E1 cells via the activation of the ERK5 signaling pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sujeong Jang ◽  
Jong-Seong Park ◽  
Han-Seong Jeong

Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.


2008 ◽  
Vol 31 (3) ◽  
pp. 98 ◽  
Author(s):  
Yi Guan ◽  
XinMin Zheng ◽  
ZhiWei Yang ◽  
ShiWen Li

Purpose: To investigate the change in expression levels of c-kit and SCF, and the protective effects of FSH on ischemia-reperfusion injury due to testicular torsion-detorsion. Methods: 24 adult male SD rats were divided into three groups of 8: control group, testicular torsion group and FSH-treated group. The control group was treated with sham-operation. Animals in the testicular torsion and FSH-treated groups were subjected to unilateral 720°counterclockwise testicular torsion for 2 hours and then reperfusion was allowed after detorsion. The FSH-treated group received intraperitoneal injection of FSH 15min before detorsion. Then, the rats were sacrificed and the testes were harvested. Histopathological changes were observed by light microscope, and the expression levels of c-kit, SCF in testicular tissue in the different groups were detected by Immunohistochemical assay and Quantitative Real-time RT-PCR analysis. Finally, the relative proportions of germ cells were measured by FCM. Results: c-kit and SCF were positive expressed in 52.58% and 61.16% of testicular cells of control tissues, respectively. Decreases of c-kit and SCF positive cells (15.01% and 9.18%) were found in the testicular torsion group. After being treated by FSH, the number of positive cells increased (31.25% and 20.01%). Moreover, the c-kit and SCF mRNA expression was increased dramatically (P < 0.01) in response to FSH stimulation. Furthermore, the number of haploid, diploid and tetraploid cells has also increased significantly in drug-treated testes (P < 0.01). Conclusion: The mechanism of tissue damage in the testicular torsion model, includes changes in the expression of c-kit and SCF following torsion. Also, FSH has a protective effect on germ cells after unilateral testicular torsion, which was reflected by increased c-kit and SCF levels.


2021 ◽  
Author(s):  
Arife Zeybek ◽  
Necdet Oz ◽  
Serdar Kalemci ◽  
Kursad Tosun ◽  
Tuba Gökdoğan Edgünlü ◽  
...  

Abstract Purpose: We aimed to examine the expression levels of the genes of APC (Adenomatous Polyposis Coli) 1, APC 2, Dkk (Dickkopf related protein) 1, Dkk -3, sFRP (Secreted frizzled-related protein) -2, sFRP-4, and sFRP-5 genes which play a role in the Wnt signaling pathway in lung adenocarcinoma and adjacent normal lung tissues, and to evaluate their relationship with clinical-pathological factors.Materials and methods: Between 2011 and 2018, the expression levels of the relevant genes in formalin-fixed paraffin-embedded tumor and adjacent intact lung tissue samples of 57 patients who were operated for lung adenocarcinoma were determined by Real-time PCR analysis. Results: The expression levels of the Dkk-1 gene in the tumor tissue, especially in stage I-II, were statistically significantly suppressed compared to normal tissue (p <0.025 ). Although Dkk-1 gene expression was suppressed in the tumor tissue of patients with early-stage lung adenocarcinoma, the level of expression of the sFRP-5 gene was found to be statistically significantly higher (p<0.039). Conclusion: In our study, between the sFRP-5 and Dkk-1 genes, known as the extracellular antagonist of the Wnt signaling pathway was found the reverse regulation. sFRP-5 gene was found as having an oncogenic role in adenocarcinoma development. Reverse regulation between these genes in early-stage lung adenocarcinoma may shed light on the mechanisms associated with the development of carcinogenesis. For that reason, clinically, this relationship needs to research in a larger series of pure adenocarcinoma and normal human lung tissues, separated by its stage, for potential therapeutic target or prognostic its significance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaohui Sun ◽  
Ning Qiao ◽  
Xianping Zhang ◽  
Lianyi Zang ◽  
Dan Zhao ◽  
...  

Zucchini (Cucurbita pepo) is an extensively cultivated and important economic cucurbit crop in China. In September 2018 and 2019, interveinal chlorosis and yellowing symptoms, suspected to be caused by either tomato chlorosis virus (ToCV; genus Crinivirus) or cucurbit chlorotic yellows virus (CCYV; genus Crinivirus) or by their co-infection, were observed on zucchini plants in a greenhouse in Shandong Province, China. The incidence of the disease in the greenhouse was 20–30%. To identify the causal agent(s) of the disease, leaf samples from 66 zucchini plants were collected in 14 greenhouses in the cities of Shouguang (n = 12), Dezhou (n = 36), Qingzhou (n = 12), and Zibo (n = 6) in Shandong. Four whitefly (Bemisia tabaci) samples and four symptomatic tomato samples were also collected from these sampling sites (one each for each site) because numerous whiteflies were observed in the sampling greenhouses and ToCV was previously reported in greenhouse tomato plants from these regions (Zhao et al. 2014). To determine whether the symptoms were associated with Crinivirus infection, reverse transcription polymerase chain reaction (RT-PCR) using Crinivirus-specific degenerate primers (CriniRdRp251F/CriniRdRp995R) (Wintermantel and Hladky 2010) was performed first on total RNA extracted using the TRIzol protocol (Jordon-Thaden et al. 2015). Thereafter, the RNA samples were subjected to RT-PCR with ToCV- or CCYV-specific primers (Sun et al. 2016; Gan et al. 2019). Of the 66 zucchini samples, 54 tested positive by the degenerate crinivirus primer pair; and among them, 10 tested positive for ToCV only, 40 positive for CCYV only, and 4 positive for both viruses. Interestingly, while both viruses were detected in all B. tabaci samples, only ToCV was detected in the tomato samples (n = 4). To confirm the identity of the viruses, the amplicons of ToCV (four samples each of tomato, B. tabaci and zucchini) and CCYV (four samples each of B. tabaci and zucchini) were Sanger sequenced (Tsingke Biotechnology Co., Ltd., Beijing, China) after cloning into pMD18-T vectors (Takara, Shiga, Japan). BLASTn analysis demonstrated that all sequences were identical to their respective amplicons. The ToCV sequences (GenBank accession numbers: tomato, MN944406; B. tabaci, MN944404; zucchini, MN944405) shared 100% sequence identity with isolates from Beijing (KT751008, KC887999, KR184675, and KP335046), Hebei (KP217196), and Shandong (KX900412). The CCYV sequence (GenBank accession number MT396249) shared 99.9% sequence identity with isolates China (JN126046, JQ904629, KP896506, KX118632, KY400633, and MK568545), Greece (LT716000, LT716001, LT716002, LT716005, and LT716006), and Cyprus (LT992909, LT992910, and LT992911). To assess the transmissibility of ToCV and CCYV, virus-free B. tabaci (n = 30) were placed in ToCV or CCYV-infected zucchini plants for one day for virus acquisition. Thereafter, the whiteflies were transferred into virus-free zucchini seedlings (cv. ‘Zaoqingyidai’, 4-leaf-stage, n = 6 for each of the control, ToCV and CCYV treatment) for one day. Three weeks after inoculation, all plants that were inoculated with either ToCV or CCYV displayed same symptoms as those observed in the greenhouses, whereas plants in the control group remained symptom free. RT-PCR analysis using ToCV- and CCYV-specific primers confirmed the infection of the plants with the respective virus, whereas control plants were free from the viruses. CCYV has been previously reported on zucchini in Algeria (Kheireddine et al. 2020), Iran (LR585225), and Cyprus (LT992910). To our knowledge, this is the first report of CCYV infection in zucchini in China, and moreover the first report of ToCV infection in zucchini in the world. Clearly, stringent management is needed to minimize the losses caused by these viruses in greenhouse operations in the region.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hossein Azizi ◽  
Amirreza Niazi Tabar ◽  
Thomas Skutella

Abstract Background Spermatogonial stem cells (SSCs) in the testis are crucial for transferring genetic information to the next generation. Successful transplantation of SSCs to infertile men is an advanced therapeutic application in reproductive biology research. Methods In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology—immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. The compact undifferentiated and more loosely connected round differentiated SSCs were isolated during testicular cell expansion from their specific feeder layer. Results ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. Also, IMH analysis showed different expression levels of Zbtb16 in the two different germ stem cell populations of the testicular tissue. While Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene, the expression of DAZL, VASA, and Zbtb16 were down-regulated during the differentiation of SSCs (P < 0.05). Also, flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. Conclusions In the current study, we performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm.


2020 ◽  
Author(s):  
Hossein Azizi ◽  
Amirreza Niazi Tabar ◽  
Thomas Skutella

Abstract Background: Spermatogonial stem cells (SSCs) in the testis are crucial for transferring genetic information to the next generation. Successful transplantation of SSCs to infertile men is an advanced therapeutic application in reproductive biology research. Methods: In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology - immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. The compact undifferentiated and more loosely connected round differentiated SSCs were isolated during testicular cell expansion from their specific feeder layer.Results: ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. Also, IMH analysis showed different expression levels of Zbtb16 in the two different germ stem cell populations of the testicular tissue. While Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene, the expression of DAZL, VASA, and Zbtb16 were down-regulated during the differentiation of SSCs (P< 0.05). Also, flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. Conclusions: In the current study, we performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hua Huang ◽  
Ping Zhao ◽  
Meijuan Xi ◽  
Fang Li ◽  
Lijiang Ji

To investigate the effect and mechanism of QingHuaZhiXie prescription on diarrhea predominant irritable bowel syndrome (D-IBS), animal models of rats were used in this study. 48 rats were randomly divided into 6 groups, containing one control group, one animal model group (D-IBS group), and four drug intervention groups (low, medium, and high dosage of QingHuaZhiXie prescription and trimebutine maleate intervention group). Abdominal withdrawal reflex (AWR) and Bristol stool form scale were recorded; the expression levels of inflammatory factors (TNF-α and IFN-γ), pathway proteins TLR4, MyD88, NF-κB, and key proteins of tight junction between intestinal epithelial cells (IECs) were detected; the microstructure of intestinal mucosal was observed by hematoxylin and eosin (H&E) staining; MPO activity was detected with immunohistochemical analysis to reflect the inflammation of tissues. Results show that QingHuaZhiXie prescription reduced diarrhea index and intestinal hypersensitivity and intestinal tissue integrity after intervention. MPO activity in QingHuaZhiXie prescription-treated rats was significantly lower relative to their model group. The expression levels of inflammatory factors and TLR4/MyD88/NF-κB pathway proteins were repressed, and the protein levels of occludin and claudin-1 increased. Meanwhile, this study also found that the remission effect of QingHuaZhiXie prescription on D-IBS increased with its dosage increase. Hence, as a therapeutic prescription for D-IBS, QingHuaZhiXie prescription could relieve D-IBS symptoms through balancing the inflammatory factors expression by inhibiting the TLR4/MyD88/NF-κB pathway and maintaining the function and structure of IECs by improving the protein levels of JAM, occludin, claudin-1, and ZO-1.


Sign in / Sign up

Export Citation Format

Share Document