Molecular Phylogenetic Analysis of Tryptophanyl-tRNA Synthetase of Actinobacillus actinomycetemcomitans

2008 ◽  
Vol 63 (5-6) ◽  
pp. 418-428 ◽  
Author(s):  
Narayanan Rajendran ◽  
Rajendram V. Rajnarayanan ◽  
Donald R. Demuth

Aminoacyl-tRNA synthetase family enzymes are of particular interest for creating universal phylogenetic trees and understanding the gene flow as these enzymes perform the basic and analogous biochemical function of protein synthesis in all extant organisms. Among them, tryptophanyl-tRNA synthetase (Trp-RS) plays a foremost role in phylogeny owing to the close relationship with tyrosine-tRNA synthetase. In this study, the sequence of the gene Trp-RS was amplified using degenerated adenylation domain primers in the periodontal bacterium Actinobacillus actinomycetemcomitans. The sequence of the cloned PCR amplicon confirmed the adenylation domain sequence with glutamic acid residue, which is absent in five other oral bacteria used in this study as well as in a number of other bacteria described in the database. The Trp-RS sequence analysis prevailed the identify elements such as Rossmann- fold sequence and tRNATrp binding domains including acceptor stem and anticodon. A theoretical model of Trp-RS of A. actinomycetemcomitans was generated. Guided docking of the ligand tryptophanyl-5′-AMP revealed a highly identical active site in comparison with the bacterial template. The phylogenetic positioning of Trp-RS among a group of oral bacterial species revealed that A. actinomycetemcomitans is closely related to Haemophilus influenzae, H. ducreyi and Pasteurella multocida.

2003 ◽  
Vol 47 (10) ◽  
pp. 3349-3351 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Filippo Luperini ◽  
Manuela Pardini ◽  
...  

ABSTRACT The in vitro activities of human β-defensin 3 (hBD-3) alone or combined with lysozyme, metronidazole, amoxicillin, and chlorhexidine were investigated with the oral bacteria Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Lactobacillus acidophilus, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis. hBD-3 showed bactericidal activity against all of the bacterial species tested. The bactericidal effect was enhanced when the peptide was used in combination with the antimicrobial agents mentioned above.


2019 ◽  
Vol 15 (02) ◽  
pp. 22-25
Author(s):  
Sunaina Thakur ◽  
Subhash Verma ◽  
Prasenjit Dhar ◽  
Mandeep Sharma

Respiratory infections of sheep and goats cause heavy morbidity and mortality, leading to huge economic losses. Conventional methods of diagnosis that include isolation and identification of incriminating microbes are time-consuming and fraught with logistic challenges. Direct detection of incriminating microbes using molecular tools is gaining popularity in clinical, microbiological settings. In this study, a total of 50 samples (44 nasal swabs and 6 lung tissues) from sheep and goats were screened for the detection of different bacterial species by in vitro amplification of genus or species-specific genes. Histophilus somni was detected in 2% goat samples, Trueperella pyogenes in 20% goat nasal swabs, whereas 22% goat nasal swab samples were found positive for Mycoplasma spp. None of the samples from sheep was detected positive for H. somni, T. pyogenes, Mycoplasma spp. Similarly, all samples, irrespective, whether from sheep or goats, showed negative results for Pasteurella multocida, Mannheimia haemolytica, and Corynebacterium pseudotuberculosis.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


2008 ◽  
Vol 87 (10) ◽  
pp. 928-931 ◽  
Author(s):  
K.F. Novak ◽  
M. Govindaswami ◽  
J.L. Ebersole ◽  
W. Schaden ◽  
N. House ◽  
...  

We have recently demonstrated that extracorporeal shock-wave therapy (ESWT) is effective in promoting the healing of dermal wounds and in regenerating alveolar bone lost through periodontal disease. The objective of the present study was to determine any antibacterial effect of ESWT on oral bacteria. Monoculture suspensions of 6 bacterial species were treated with 100 to 500 pulses of ESWT at energy flux densities (EFD) of 0.12 mJ/mm2, 0.22 mJ/mm2, and 0.3 mJ/mm2. Following treatment, aliquots were plated for viability determination and compared with untreated controls. ESWT showed a significant microbicidal effect for Streptococcus mutans and an unencapsulated strain of Porphyromonas gingivalis following as few as 100 pulses at 0.3 mJ/mm2 (p ≤ 0.001). In addition, a significant disruption of bacterial aggregates was observed at lower EFDs. No significant reduction in viability was observed for all other bacteria at EFDs and pulses tested (p > 0.05). These findings suggest that low-energy ESWT may be bactericidal for selected oral bacteria.


2011 ◽  
Vol 27 (3) ◽  
pp. 883-892
Author(s):  
M.I. Urosevic ◽  
D. Stojanovic ◽  
B. Lako ◽  
I. Jajic ◽  
Z. Milicic ◽  
...  

The research was conducted on 19 stud farms in Serbia, on 80 mares used for breeding, with and without reproductive disorders. During the two years period (from 2009 to 2010) double guarded uterine swabs from 80 mares, aged between 3 and 22 years were collected. Mares belonged to the different breeds: Thoroughbred, Standardbred, Lipizzaner and mixed breeds. It was determined, that bacterial infection of genital organs was found in 24 mares in the examined population, and the bacterial species Streptococcus zooepidemicus was diagnosed in the 11 samples from cervical swabs. In the 5 samples, Escherichia coli was isolated, while Staphylococcus epidermidis and Pasteurella multocida were present in the 2 samples each, while the other causes and simultaneous isolation of two bacterial species are much less present. These species are: Bacillus spp. plus Escherichia coli; Streptococcus zooepidemicus plus Klebsiella pneumoniae and Escherichia coli plus Streptococcus zooepidemicus. In one swab we determinated Arcanobacter pyogenes. In this examination, according to available data after natural mating, we found conception level of 43,10%, which is similar with previous reports in our country.


2019 ◽  
Vol 10 (2) ◽  
pp. 1049-1053 ◽  
Author(s):  
Geetha RV ◽  
John Rozar Raj B ◽  
Lakshmi Thangavelu

To conduct a study regarding the antibacterial activity of essential oils against bacteria causing Caries. Essential oils are distillates of the volatile compounds of a plant’s secondary metabolism and may act as photoprotective agents. Their curative effect has been known since antiquity. It is based on a variety of pharmacological properties which are specific for each plant species. The mouth contains a variety of oral bacteria, but only a few species of bacteria are believed to cause dental caries. Antibacterial activity of the three essential oils, Rosemary oil, Holy basil oil, Thyme oil was screened against Streptococcus mutans, using disc diffusion technique. The rosemary oil was more effective against Streptococcus mutans with a zone of inhibition of 52 mm diameter (at concentration 200 µl), Rosemary oil showed a zone of inhibition of 44 mm diameter and with thyme oil, the zone diameter was 30 mm. The results of this study showed that the essential oils at different concentrations exhibited antibacterial activity against the bacterial species tested.


2013 ◽  
Vol 21 (1) ◽  
pp. 21-28 ◽  
Author(s):  
J. L. Ebersole ◽  
S. C. Holt ◽  
J. E. Delaney

ABSTRACTThe acquisition and development of the complex oral microbiome remain ill defined. While selected species of oral bacteria have been examined in relation to their initial colonization in neonates, a more detailed understanding of the dynamics of the microbiome has been developed only in adults. The current investigation used a nonhuman primate model to document the kinetics of colonization of the oral cavities of newborns and infants by a range of oral commensals and pathogens. Differences in colonization were evaluated in newborns from mothers who were maintained on an oral hygiene regimen pre- and postparturition with those displaying naturally acquired gingivitis/periodontitis. The results demonstrate distinct profiles of acquisition of selected oral bacteria, with the transmission of targeted pathogens,Porphyromonas gingivalisandAggregatibacter actinomycetemcomitans, being passed on primarily from mothers with gingivitis/periodontitis. This colonization resulted in defined patterns of systemic antibody responses in the infants. The significant relative risk measures for infection with the pathogens, as well as the relationship of oral infection and blood serum antibody levels, were consistent with those of the newborns from mothers with gingivitis/periodontitis. These findings indicate that the early acquisition of potentially pathogenic oral bacterial species might impact the development of mucosal responses in the gingiva and may provide an enhanced risk for the development of periodontitis later in life.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
León Francisco Espinosa-Cristóbal ◽  
Carolina Holguín-Meráz ◽  
Erasto Armando Zaragoza-Contreras ◽  
Rita Elizabeth Martínez-Martínez ◽  
Alejandro Donohue-Cornejo ◽  
...  

The dental plaque is an oral microbiome hardly associated to be the etiological agent of dental caries and periodontal disease which are still considered serious health public problems. Silver nanoparticles (AgNPs) have demonstrated to have good antimicrobial properties affecting a wide variety of microorganisms, including oral bacteria; however, there is no scientific information that has evaluated the antimicrobial effect of AgNPs against clinical oral biofilms associated with dental caries and periodontal disease. The aim of this study was to determine the antimicrobial and substantivity effects of AgNPs in oral biofilms isolated clinically from patients with dental caries and periodontal disease. Sixty-seven young and young-adult subjects with dental caries and periodontal disease were clinically sampled through the collection of subgingival dental plaque. The inhibitory effect of AgNPs was performed with standard microbiological assays by triplicate using two sizes of particle. Polymerase chain reaction (PCR) assay was used to identify the presence of specific bacterial species. All AgNPs showed an inhibitory effect for all oral biofilms for any age and, generally, any gender (p>0.05); however, the effectiveness of the antimicrobial and substantivity effects was related to particle size, time, and gender (p<0.05). The identified microorganisms were S. mutans, S. sobrinus, S. sanguinis, S. gordonii, S. oralis, P. gingivalis, T. forsythia, and P. intermedia. The AgNPs could be considered as a potential antimicrobial agent for the control and prevention of dental caries and periodontal disease.


Author(s):  
Lidia Szulc-Dąbrowska ◽  
Magdalena Bossowska-Nowicka ◽  
Justyna Struzik ◽  
Felix N. Toka

Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.


Sign in / Sign up

Export Citation Format

Share Document