Synthesis of Carboxymethyl Starch-Bio-Based Epoxy Resin and their Impact on Mechanical Properties

2020 ◽  
Vol 234 (11-12) ◽  
pp. 1759-1769 ◽  
Author(s):  
Tariq Aziz ◽  
Hong Fan ◽  
Farman Ullah Khan ◽  
Roh Ullah ◽  
Fazal Haq ◽  
...  

AbstractIn the current research, we observed numerous suggestions are promoting the use of bio-based epoxy resins, replacing the petroleum-based products like Diglycidyl ether of bisphenol A type epoxy resin DGEBA. With the passage of time, the impending challenges include preparation of environmentally-friendly epoxy with minimum toxic side effect and improved properties. Therefore, we describe a very useful method for preparing new silicone-bridged dimethyl siloxane monomers in high quantity, derived from naturally occurring eugenol. By putting the methyl siloxane, computed with different chain lengths into their molecular backbone. Such epoxy monomers have different molecular structure with high purity. This dimethyl siloxane epoxy, with lower viscosity than commercial DGEBA epoxy, has superior thermal properties, which were evaluated using differential scanning calorimetry DSC. Modification of CMS increases the hydrophilicity. Bio-based epoxy (self-prepared) resin improved adhesive properties, with the help of modified CMS. This study presents a very easy and effective chemical modification to enhance interfacial adhesion composites with superior properties.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


Author(s):  
Abbas Hassan Faris

In this work, appropriate alternative for diglycidyl ether bisphenol A (DGEBA) was found to avoid the destructive effects of bisphenol A. Lignin, an aromatic compound from palm tree leaves, was used as a renewable material to synthesize a bio-based epoxy resin. Lignin extracted using Kraft pulping process. Kraft Lignin was epoxidized with epichlorohydrin in alkaline medium. Nano-titanium dioxide was used as filler with ratio of 10% to prepare the green epoxy composite. The structure of the Kraft lignin and lignin-based epoxy resin was proven via Infrared spectra (FT-IR) were recorded using solid KBr disk by testing Shimadzu (FT-IR-8300) spectrophotometer. The thermal properties of the curing process of lignin-based epoxy resin and composite were investigate using Differential scanning calorimetry (DSC) analysis. Potentiodynamic measurements data revealed that the anti-corrosion performance of the lignin based epoxy resin. The study demonstrates successful of epoxidation of Kraft lignin. In addition, lignin based eopxy resin showed effective inhibitor for carbon steel in 3.5 wt. % NaCl electrolyte solutions


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1914 ◽  
Author(s):  
Kireev ◽  
Bilichenko ◽  
Borisov ◽  
Mu ◽  
Kuznetsov ◽  
...  

Phosphazene-containing epoxy oligomers (PEO) were synthesized by the interaction of hexachlorocyclotriphosphazene (HCP), phenol, and bisphenol A in a medium of excess of epichlorohydrin using potassium carbonate and hydroxide as HCl acceptors with the aim of obtaining a product with lower viscosity and higher phosphazene content. PEOs are mixtures of epoxycyclophosphazene (ECP) and a conventional organic epoxy resin based on bisphenol A in an amount controlled by the ratio of the initial mono- and diphenol. According to 31P NMR spectroscopy, pentasubstituted aryloxycyclotrophosphazene compounds predominate in the ECP composition. The relative content in the ECP radicals of mono- and diphenol was determined by the MALDI-TOF mass spectrometry method. The organic epoxy fraction, according to gas chromatograpy-mass spectrometry (GC-MS), contains 50–70 wt % diglycidyl ether of bisphenol A. PEO resins obtained in the present work have reduced viscosity when compared to other known phosphazene-containging epoxy resins while phosphazene content is still about 50 wt %. Resins with an epoxy number within 12–17 wt %, are cured by conventional curing agents to form compositions with flame-retardant properties, while other characteristics of these compositions are at the level of conventional epoxy materials.


2015 ◽  
Vol 44 (1) ◽  
pp. 19-25
Author(s):  
T. Maity ◽  
B.C. Samanta

Purpose – The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin. For this purpose, first AFCAC was synthesised, characterised and then curing reaction was carried out. Design/methodology/approach – Equimolecular mixture of AFCAC and DGEBA was subjected to curing reaction, and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction were also carried out from those DSC exotherms. The mechanical properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) of cured epoxy were also reported. Findings – DSC results reflected the effective first order curing reaction of AFCAC with epoxy resin. Mechanical properties reflected appreciable rigidity of AFCAC cured epoxy matrix and TGA showed that the cured epoxy networks were thermally stable up to around 297°C. Research limitations/implications – The curing agent AFCAC was synthesised by using chloroaniline and acetaldehyde in acid medium. There are some limitations for this procedure. The synthetic procedure is pH dependent. So reaction cannot be done at any pH value. The reaction must also be carried out at room temperature without any heating. To obtain low molecular weight curing agent, chloroaniline and acetaldehyde cannot be taken in equimolecular ratio because the equimolecular mixture of them produces high molecular weight condensate. This was shown in our previous publication. Some implications are also there. By changing amine and aldehyde other curing agents could be synthesised and the curing efficiency of those for epoxy resin could also be studied. Originality/value – Experimental results revealed the greater suitability of AFCAC as curing agent for DGEBA resin and novelty of AFCAC cured matrix in the field of protective coating, casting, adhesives, etc.


1996 ◽  
Vol 8 (2) ◽  
pp. 301-305
Author(s):  
K D Patel

A novel epoxy resin, namely diglycidyl ether (DGE) of 2,4-dihydroxyacetophenone (i.e. resacetophenone, RAP) was prepared and characterized. The curing of DGE–RAP by various diamines was studied kinetically by differential scanning calorimetry (DSC). The cured neat products have been characterized by IR spectral studies and thermogravimetric analysis (TGA). The glass-reinforced composites based on such a novel epoxy resin–diamine system have also been prepared and characterized.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4305 ◽  
Author(s):  
Valeriia Karaseva ◽  
Anne Bergeret ◽  
Clément Lacoste ◽  
Hélène Fulcrand ◽  
Laurent Ferry

The aim of this work was an investigation of the ability of gallic (GA) and ellagic (EA) acids, which are phenolic compounds encountered in various plants, to act as flame retardants (FRs) for epoxy resins. In order to improve their fireproofing properties, GA and EA were treated with boric acid (to obtain gallic acid derivatives (GAD) and ellagic acid derivatives (EAD)) to introduce borate ester moieties. Thermogravimetric analysis (TGA) highlighted the good charring ability of GA and EA, which was enhanced by boration. The grafting of borate groups was also shown to increase the thermal stability of GA and EA that goes up respectively from 269 to 528 °C and from 496 to 628 °C. The phenolic-based components were then incorporated into an epoxy resin formulated from diglycidyl ether of bisphenol A (DGEBA) and isophorone diamine (IPDA) (72, 18, and 10 wt.% of DGEBA, IPDA, and GA or EA, respectively). According to differential scanning calorimetry (DSC), the glass transition temperature (Tg) of the thermosets was decreased. Its values ranged from 137 up to 108 °C after adding the phenolic-based components. A cone calorimeter was used to evaluate the burning behavior of the formulated thermosets. A significant reduction of the peak of heat release rate (pHRR) for combustion was detected. Indeed, with 10 wt.% of GA and EA, pHRR was reduced by 12 and 44%, respectively, compared to that for neat epoxy resin. GAD and EAD also induced the decrease of pHRR values by 65 and 33%, respectively. In addition, a barrier effect was observed for the resin containing GAD. These results show the important influence of the biobased phenolic compounds and their boron derivatives on the fire behavior of a partially biobased epoxy resin.


Author(s):  
Patryk A. Bolimowski ◽  
Ian P. Bond ◽  
Duncan F. Wass

Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 782 ◽  
Author(s):  
Seoyoon Yu ◽  
Wonjoo Lee ◽  
Bongkuk Seo ◽  
Chung-Sun Lim

Epoxy resins have found various industrial applications in high-performance thermosetting resins, high-performance composites, electronic-packaging materials, adhesives, protective coatings, etc., due to their outstanding performance, including high toughness, high-temperature performance, chemical and environmental resistance, versatile processability and adhesive properties. However, cured epoxy resins are very brittle, which limits their applications. In this work, we attempted to enhance the toughness of cured epoxy resins by introducing benzene tetracarboxamide polyamine (BTCP), synthesized from pyromellitic dianhydride (PMDA) and diamines in N-methyl-2-pyrrolidone (NMP) solvent. During this reaction, increased viscosity and formation of amic acid could be confirmed. The chemical reactions were monitored and evidenced using 1H-NMR spectroscopy, FT-IR spectroscopy, water gel-phase chromatography (GPC) analysis, amine value determination and acid value determination. We also studied the effect of additives on thermomechanical properties using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamical mechanical analysis (DMA), thermomechanical analysis (TMA) and by measuring mechanical properties. The BTCP-containing epoxy resin exhibited high mechanical strength and adhesion strength proportional to the amount of BTCP. Furthermore, field-emission scanning electron microscopy images were obtained for examining the cross-sectional morphology changes of the epoxy resin specimens with varying amounts of BTCP.


1996 ◽  
Vol 8 (2) ◽  
pp. 233-242
Author(s):  
Hasmukh S Patel ◽  
Sanket N Shah

Novel diamines, namely N, N′-bis[1-(2-methyl-4-aminophenyl)ethanonyl]-1,4- benzenediamine (BMAED 1) and N, N′-bis[1-(4-methyl-3-animophenyl)ethanonyl]-1,4-benzenediamine (BMAED 2), have been prepared and reacted with various bismaleimides (BM) at a BM:diamine ratio of 1:2. The resulting oligoimides have been characterized by elemental analysis, IR spectral studies and the number average molecular weight ( Mn) estimated by non-aqueous conductometric titration and thermogravimetry. Some of the oligomides have been modified by addition (i.e. curing reaction) of epoxy resin, namely the diglycidyl ether of bisphenol-A, and studied by differential scanning calorimetry (DSC). The glass- and carbon-reinforced composites have also been prepared and characterized by their mechanical properties.


1997 ◽  
Vol 9 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Hasmukh S Patel ◽  
Nilesh P Patel

An amino-terminated oligoimide was prepared by Michael addition reaction of N, N′-1, 4-phenylene bismaleimide (PBM) and 4, 4′-diamino-diphenyl methane (DDM) at a PBM–DDM ratio of 1:2. The poly(amido-imide)s (PAIs) were prepared by condensation of this PBM–DDM oligoimide with various aliphatic bisesters. The resultant PAIs were characterized by elemental analysis, IR spectral studies, number-average molecular weight ( Mn), estimated by nonaqueous conductometric titration, and thermogravimetry. The curing reaction of the epoxy resin–, namely diglycidyl ether of bisphenol-A (DGEBA)–, PAI system was monitored by differential scanning calorimetry (DSC). Based on cure temperature, the glass- and carbon-fibrereinforced composites (i.e. laminates) of the PAI–epoxy resin system have also been prepared and characterized.


Sign in / Sign up

Export Citation Format

Share Document