scholarly journals Vertical differentiation of pedogenic iron forms – a key of hydromorphic soil profile development

2021 ◽  
Vol 70 (4) ◽  
pp. 369-380
Author(s):  
Marianna Ringer ◽  
◽  
Gergely Jakab ◽  
Péter Sipos ◽  
Máté Szabó ◽  
...  

This paper focuses on the vertical distribution and characterisation of pedogenic iron forms in a Gleysol- Histosol transect developed in a marshy area in the Danube-Tisza Interfluve, Hungary. Four soil profiles were investigated along a series of increasing waterlogging and spatial and temporal patterns of hydromorphic pedofeatures (characteristics of pedogenic iron forms) were recorded. Frequent and wide-range redox potential (Eh) changes caused the emergence of many types of redoximorphic iron features, including mottles, plaques and nodules. The forms of these features depended on the micro-environments determined by the vertical position in the soil profile and the presence of plant roots. The greatest iron enrichment occurred in the zone of most intensive and widest-range redox fluctuations. Increasing water saturation resulted the extension of gleyic pattern due to the existence of permanent reduction. Most of the features also showed annual variations during the varying periods of water saturation and aeration.

2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 689
Author(s):  
Rudolf Brázdil ◽  
Kateřina Chromá ◽  
Tomáš Púčik ◽  
Zbyněk Černoch ◽  
Petr Dobrovolný ◽  
...  

In the Czech Republic, tornadoes may reach an intensity of F2 and F3 on the Fujita scale, causing “considerable” to “severe” damage. Documentary evidence is sufficient to allow the creation of a chronology of such events, from the earliest recorded occurrence in 1119 CE (Common Era) to 2019, including a total of 108 proven or probable significant tornadoes on 90 separate days. Since only 11 significant tornadoes were documented before 1800, this basic analysis centers around the 1811–2019 period, during which 97 tornadoes were recorded. Their frequency of occurrence was at its highest in the 1921–1930, 1931–1940, and 2001–2010 decades. In terms of annual variations, they took place most frequently in July, June, and August (in order of frequency), while daily variation favored the afternoon and early evening hours. Conservative estimates of human casualties mention 8 fatalities and over 95 people injured. The most frequent types of damage were related to buildings, individual trees, and forests. Tornadoes of F2–F3 intensity were particularly associated with synoptic types characterized by airflow from the western quadrant together with troughs of low pressure extending or advancing over central Europe. Based on parameters calculated from the ERA-5 re-analysis for the period of 1979–2018, most of these tornadoes occurred over a wide range of Convective Available Potential Energy (CAPE) values and moderate-to-strong vertical wind shear. The discussion herein also addresses uncertainties in tornado selection from documentary data, the broader context of Czech significant tornadoes, and the environmental conditions surrounding their origins.


2021 ◽  
Author(s):  
Yair Gordin ◽  
Thomas Bradley ◽  
Yoav O. Rosenberg ◽  
Anat Canning ◽  
Yossef H. Hatzor ◽  
...  

Abstract The mechanical and petrophysical behavior of organic-rich carbonates (ORC) is affected significantly by burial diagenesis and the thermal maturation of their organic matter. Therefore, establishing Rock Physics (RP) relations and appropriate models can be valuable in delineating the spatial distribution of key rock properties such as the total organic carbon (TOC), porosity, water saturation, and thermal maturity in the petroleum system. These key rock properties are of most importance to evaluate during hydrocarbon exploration and production operations when establishing a detailed subsurface model is critical. High-resolution reservoir models are typically based on the inversion of seismic data to calculate the seismic layer properties such as P- and S-wave impedances (or velocities), density, Poisson's ratio, Vp/Vs ratio, etc. If velocity anisotropy data are also available, then another layer of data can be used as input for the subsurface model leading to a better understanding of the geological section. The challenge is to establish reliable geostatistical relations between these seismic layer measurements and petrophysical/geomechanical properties using well logs and laboratory measurements. In this study, we developed RP models to predict the organic richness (TOC of 1-15 wt%), porosity (7-35 %), water saturation, and thermal maturity (Tmax of 420-435⁰C) of the organic-rich carbonate sections using well logs and laboratory core measurements derived from the Ness 5 well drilled in the Golan Basin (950-1350 m). The RP models are based primarily on the modified lower Hashin-Shtrikman bounds (MLHS) and Gassmann's fluid substitution equations. These organic-rich carbonate sections are unique in their relatively low burial diagenetic stage characterized by a wide range of porosity which decreases with depth, and thermal maturation which increases with depth (from immature up to the oil window). As confirmation of the method, the levels of organic content and maturity were confirmed using Rock-Eval pyrolysis data. Following the RP analysis, horizontal (HTI) and vertical (VTI) S-wave velocity anisotropy were analyzed using cross-dipole shear well logs (based on Stoneley waves response). It was found that anisotropy, in addition to the RP analysis, can assist in delineating the organic-rich sections, microfractures, and changes in gas saturation due to thermal maturation. Specifically, increasing thermal maturation enhances VTI and azimuthal HTI S-wave velocity anisotropies, in the ductile and brittle sections, respectively. The observed relationships are quite robust based on the high-quality laboratory and log data. However, our conclusions may be limited to the early stages of maturation and burial diagenesis, as at higher maturation and diagenesis the changes in physical properties can vary significantly.


2018 ◽  
Vol 15 (6) ◽  
pp. 661-677 ◽  
Author(s):  
Toufiq Ouzandja ◽  
Mohamed Hadid

Purpose This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu. Design/methodology/approach The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves. Findings Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear. Originality/value This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).


2022 ◽  
pp. 096703352110618
Author(s):  
Orlando CH Tavares ◽  
Tiago R Tavares ◽  
Carlos R Pinheiro Junior ◽  
Luciélio M da Silva ◽  
Paulo GS Wadt ◽  
...  

The southwestern region of the Amazon has great environmental variability, presents a great complexity of pedoenvironments due to its rich variability of geological and geomorphological environments, as well as for being a transition region with other two Brazilian biomes. In this study, the use of pedometric tools (the Algorithms for Quantitative Pedology (AQP) R package and diffuse reflectance spectroscopy) was evaluated for the characterization of 15 soil profiles in southwestern Amazon. The AQP statistical package—which evaluates the soil in-depth based on slicing functions—indicated a wide range of variation in soil attributes, especially in the superficial horizons. In addition, the results obtained in the similarity analysis corroborated with the description of physical, chemical components and oxide contents in-depth, aiding the classification of soil profiles. The in-depth characterization of visible-near infrared spectra allowed inference of the pedogenetic processes of some profiles, setting precedents for future work aiming to establish analytical strategies for soil classification in southwestern Amazon based on spectral data.


2021 ◽  
Author(s):  
Anthony Lamur ◽  
Silvio De Angelis ◽  
Rayco Marrero ◽  
Yan Lavallée ◽  
Pablo J. Gonzalez

<p>Surface water resources on volcanic islands with moderate rainfall and relatively high permeability are usually scarce or non-existent. As such, life and local economies of these islands mostly relies on groundwater exploitation. It is therefore important to characterise the sustainability of volcanic aquifer systems. In short, an aquifer is deemed in equilibrium when the recharge rate equals or exceeds the exploitation rate. The Izaña area in Tenerife Island (Canary Islands, Spain) has been exploited since the 1900s via a series of ~30 horizontal drilling or water galleries coming from both flanks of the NE-Ridge. Since exploitation began, the water table has dropped continuously, in some area even more than 200 m. Since the 2000s, aquifer dynamics (compaction) have been observed using InSAR indicating a subsidence rate of up to 2 cm per year.</p><p>Here, we investigate a suite of rock samples collected. The samples were collected at several water galleries aiming to be representative of the aquifer materials from the Izaña area. We first characterise the basic physical properties of each samples (porosity, permeability, solid density) before quantifying the elastic parameters (Young’s modulus, Poisson ratio) and uniaxial strength of the lithologies collected. We also measure V<sub>p</sub> under dry and wet conditions (i.e. different saturation levels) to assess whether water saturation can alter the velocity of P-waves passing through those rocks.</p><p>Preliminary results show that connected porosities range from 0.16 to 45%, conferring a wide range of mechanical response to increasing effective pressure, with strength ranging from 18 – 315 MPa and Young’s moduli ranging from 3 – 57 GPa. In a similar fashion, results for V<sub>p</sub> measurements also exhibit a range of values (~1.5 – 4.5 km/s). These data show that materials present in the aquifer are extremely varied, suggesting that both fluid flow and observed deformation are likely to be controlled by the weakest, most porous lithologies.</p><p>These results will further be integrated with the lithostratigraphic record of the aquifer in order to model the mechanical response of the aquifer to changes in effective pressures, and specifically pore pressure reduction with water extraction. Additionally, chemical and textural analysis will provide insights on the evolution of the porous network at different alteration levels, here serving as a proxy for time at saturation in the aquifer. Finally, we aim to compare the experimental results from laboratory measurements to those of hydro-geophysical measurements that will be collected in the field starting in mid-2021.</p>


1990 ◽  
Vol 14 ◽  
pp. 23-27 ◽  
Author(s):  
W.F. Budd ◽  
P. Rayner

A global energy balance model has been developed which includes an interactive mixed layer ocean, sea ice, and snow and ice cover on the land. A full annual cycle is included and the model provides a close simulation to the variation of surface temperature through the year over land and over ocean as a function of latitude. The present annual variations of sea ice and snow on the ground are also well simulated. The model has been used for a wide range of sensitivity tests which include variations of the solar constant, surface albedos, and the effects of feed-back, or absence of feed-back, in the reponse of the snow and ice cover. Studies have been made of the model’s response to the long term variations in the Earth’s Orbital characteristics such as changes in the perihelion, the obliquity and the eccentricity as well as various combined changes. Independent sensitivity studies of the response of the model to the presence of the large ice sheets in the northern hemisphere have also been carried out. A series of model runs have been performed to study climatic changes around the globe from 160 000 years Β.P. (Before Present) to the present. An examination is made of the impacts of the orbital changes alone, as well as with the feed-back from the large ice sheets.


Clay Minerals ◽  
1986 ◽  
Vol 21 (2) ◽  
pp. 149-157 ◽  
Author(s):  
S. Bouda ◽  
K. P. Isaac

AbstractBiotites from three peaty gleyed podzol soil profiles on ranite bedrock were examined to investigate the oxidation of the octahedral Fe during weathering. Oxidation of these biotites as determined by Mössbauer spectroscopy shows a good correlation with the in situ measured soil Eh values of the sampled horizons. In every soil profile the highest Eh measured is in the A horizon and the lowest in the C horizon. Similarly, biotites from the A horizons are the most oxidized compared with those from the lower horizons. In most of the samples the oxidation is accompanied by loss of K+ from the lattice, as demonstrated by a moderate degree of vermiculitization.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. K93-K102 ◽  
Author(s):  
W. L. Lai ◽  
W. F. Tsang ◽  
H. Fang ◽  
D. Xiao

This paper describes a new method for determining porosities in two porous construction and geologic materials (asphalt and soil) by using ground-penetrating radar (GPR) over a wide range of controlled degrees of water saturation [Formula: see text]. We call this method a cyclic moisture variation technique (CMVT). Freshwater is used as an enhancer or a tracer to allow GPR to easily detect and differentiate amounts of water or other moisture in these materials. The CMVT is based on measuring the changes of real permittivity [Formula: see text] and [Formula: see text] in the test materials as they transition from partially saturated states to a fully saturated state via cycles of water permeation and dewatering. This method does not disturb the test materials, as do the methods associated with traditional laboratory testing on cored samples. It also tests a large mass of in situ material, compared with the small mass tested by the conventional or electromagnetic coaxial transmission line (EMCTL) method (also known as a dielectric cell) and the time-domain reflectometry (TDR) method. Porosity values of asphalt [Formula: see text] and of soils [Formula: see text] were determined by fitting the data into the complex refractive index model (CRIM). Dielectric hysteresis of both soils and asphalt also is observable during the tests and shows that the pathways of water-ingress and water-egress processes are not identical in the plot of [Formula: see text] versus degrees of water saturation [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document