scholarly journals Extraction of Lignin from Empty Fruit Bunch Fiber via Microwave-Assisted Deep-Eutectic Solvent Heating

2021 ◽  
Vol 1 (2) ◽  
pp. 18-25
Author(s):  
Muhammad Nor Arifin Yaakob ◽  
Rasidi Roslan

This work study about the extraction of lignin from Empty Fruit Bunch (EFB). It is a type of lignocellulosic waste produced during the palm oil extraction process. There are three main components of lignocellulosic, which is one of them is lignin. A deep eutectic solvent (DES) with microwave-assisted heating has been used as a process to extract the lignin from EFB and turn it into a value-product. This convenient method was started with the mixing of EFB and DES. After that, the mixture was heated via microwave synthesis reactor at different temperature and time parameters. The extracted lignin yield was dried and ground into a powder form. The highest lignin yield recovered is 30 % by the highest time and temperature. Interestingly, the purity of all lignin yields are above than 80 %. The highest yield of lignin was characterized. According to Fourier-Transform Infrared (FTIR) spectra, there was a significant functional group of phenolic and aliphatic hydroxyl in lignin. Besides, the methoxy group was also configured in lignin spectra. The presence of conjugated alkene also conveyed the characteristic of lignin. The FTIR spectra were intensified with 1H Nuclear Magnetic Resonance (NMR) spectra where there was a chemical shift in lignin and raw EFB which was designated to aliphatic and aromatic protons bonded to a carbon atom. Three regions of decomposition occur in the Thermogravimetric Analysis (TGA) spectra. The initial decompose temperature of lignin was lower compare to raw EFB. Next, second-stage lignin decomposed at 434.14 ℃ with weight loss of 36.21 %. Lastly, for the final stage, lignin decomposes at 552.54 ℃. Moreover, Differential Scanning Calorimetry (DSC) spectra demonstrate that the Tg value of lignin managed to be identified. However, the Tg value of raw EFB cannot be well defined. As for the characterization in residual fractions of EFB, the lowest crystallinity index (CrI) value of raw EFB has proven the presence of lignocellulosic in its structure. The residual fractions that reacted at higher temperatures have an inflated value of CrI as they contain abundant left out cellulose.

2022 ◽  
Vol 1048 ◽  
pp. 485-492
Author(s):  
Tran Thi Kim Ngan ◽  
Tran Thien Hien ◽  
Dao Tan Phat ◽  
Ly Thi Ngoc Minh ◽  
Huynh Bao Long ◽  
...  

Hydrodistillation (HD) is a traditional technique used in most extraction processes. On the other hand, microwave-assisted hydrogen distillation (MAHD), an advanced method using microwaves in the extraction process, has recently emerged. The chemical ingredients of essential oils obtained from pomelo (Citrus grandis L.) peels obtained by MAHD and by hydrodistillation (HD) were analyzed and compared gas chromatography-mass spectrometry (GC/MS). The results show that there is no significant difference between the two methods in terms of extraction efficiency, at around 4.45 to 4.7%. The main components of essential oils were Limonene, α-pinene, β-Myrcene and Sabinene. The content of those compounds showed no clear quantitative and qualitative difference between HD and MAHD. Experimental results show that the MAHD method provides a good alternative to extracting essential oils from grapefruit, saving time, operating costs and achieving more optimal levels. Keywords: Comparison, Pomelo (Citrus grandis L.), Essential oil, Hydrodistillation, Microwave assist hydrodistillation,


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Latifa Putri Aulia

Soursop leaf (Annona muriciata L) contain active ingredients that is annonain, saponin, flavonoid, and tannin. Some research even found that in soursop leaf contain bio active substance called acetogenin that act as anti cancer. Commonly extraction process used to extracting substance in the leaf is known as conventional extracting process which has flaws. Hence its need further research in term of extracting in which more optimal that is the usage of microwave (Microwave Assisted Extraction / MAE) MAE extraction is extracting process that using microwave radiation to heat the solvent quick and efficient so the extraction can be done in time to extract selectively from various raw ingredients.Response Surface Methodolgy (RSM) is a an appropriate method to analyze the effects of a single variable and for seeking the optimum condition for multivariable systems efficiently. The purpose of this research is to determine the optimal condition from soursop leaf extraction using MAE extraction with 2 variables that is extraction time and solvent ratio so can be concluded that rough soursop leaf extract with the optimal phenol and characteristics anti oxidant activities. This research using CCD method from RSM (Response Surface Methodology) with 2 unbound variables that time extraction (X1) and solvent ratio (X2). Earned result from this research is quadratic with the equation is a value for antioxidant activity  Y = -2,24087 + 2,17790X1 + 5,25566X2 + 0,12000X1X2 - 0,25875X12 – 0,12373X22. While the total value for phenol is Y = -175,82270 – 8,07421X1 + 42,0810X2 – 2,62317X1X2 – 3,00785X12 -1,39204 X22. The optimum point from each variable is the extracting time 9' and 84" with solvent ratio of 25,19 of ingredient that is simplicia powder of soursop leaf approximately 25gr. From the optimum point we can drawn that optimum condition of anti oxidant activity respond is as much as 75,75% and phenol total value of 276,9 ppm. From the analysis result we can conclude that extracting time and solvent ratio can signnificanly effect the result we get.


2021 ◽  
Vol 1 (2) ◽  
pp. 26-33
Author(s):  
Rasidi Roslan ◽  
Muhammad Nor Arifin Yaakob ◽  
Ms Fathihah

Lignin is a sub-product from lignocellulose apart from cellulose and hemicellulose that produced from empty fruit bunch fiber (EFB). Lignin has low solubility and reactivity due to its bulky macromolecule structre. Being one of the wastes that being generated in massive amount, many alternatives has been taken to transform lignin into valuable products. To do so, many reactions are needed for the lignin to go through. In this study, lignin will be extracted from empty fruit bunch (EFB) with the aid of acid hydrotrope concentration of 30 % and microwave assisted with various extraction heating time and temperature. Characterization of lignin is done using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Nuclear magnetic resonance (NMR) while Scanning Electron Microscopy (SEM) and X-ray Powder Diffraction (XRD) used to characterize residues. The highest percentage of lignin yield and its purity obtained are 19.47 % and 96.63 % with the reaction time and temperature of the microwave is 30 minutes and 90 °C. From Fourier Transform Infrared Spectroscopy (FTIR), a wide band at 3430.09 cm-1 and 3413.45 cm-1 are observed due to O-H stretching vibration. As for peak at 1123.17 cm-1 and 1051.26 cm-1, it correspond to syringyl and guaicyl unit in both lignin and raw EFB. As for Thermogravimetric analysis (TGA), it shows that lignin decomposes slowly compared to raw EFB due to the aromatic structure of lignin that is very stable, therefore leading to difficulty of decomposing while from Differential Scanning Calorimetry (DSC), after removing cellulose and hemicellulose, glass transition temperature (Tg) obtained from lignin DSC spectroscopy is 193.05 °C at heat flow of 1.15 mW/mg. Next, from Nuclear magnetic resonance (NMR) spectroscopy, the signals observed around 6.5 – 8.0 ppm indicate aromatic H in syringyl and guaiacyl unit only at lignin spectra while at 3.3 – 4.0 ppm, raw EFB has an intense peak compared to lignin which attribute to methoxyl group. When the residue of the lignin as well as the raw EFB powder is characterized using X-ray Powder Diffraction (XRD), the crystallinity index of the lignin with reaction time and temperature of the microwave 30 minutes and 90 °C is the highest, 69.28 %. As a conclusion, an admissible percent of lignin yield and purity is able to be obtained with addition of acid hydrotrope depending on the variables. From the spectroscopies characterization, it is proved that lignin characteristics and properties are compatible for the production of new and value added products.


2017 ◽  
Vol 1 (2) ◽  
pp. 156
Author(s):  
Lilis Sugiarti ◽  
Asridewi Suwandi ◽  
Amry Syawaalz

Gingerol in red ginger (Zingiber officinale, Roscoe) with percolation method modified base         Ginger was a spice type most widely used in various food and beverage recipes. Ginger is commonly used as a medicine at colds, indigestion, as an analgesic, anti-inflammatory, and others. Some of main components in ginger such as gingerol and shogaol are antioxidants. The purpose of this research was to isolate the red-gingerol in ginger rhizome and to identify. Metode used was extraction process by using percolation with ethanol solvent at room temperature, followed by isolation of gingerol by adding KOH solution at concentrations of 0, 1N, 0.5 N; 1.0 N. Furthermore, the extracted of compounds were identified using TLC and GC-MS.Based on the research result and identification had been carried out on samples of red ginger, it could be concluded that the water content of red ginger samples were 9.70%, with levels of 8.72% oleoresin. The weight of crude gingerol obtained in 1.0 N KOH concentration was to 0.61 g, while the concentration of KOH that produces greatest gingerol was 0.5 N, which amounted of 6.13%. The other peak than the gingerol peak suggested that the isolation was not pure yet. Homovanilil  alcohol  compounds  was  always  in  the greatest  prosentase,  which  was  22%,  followed  by  shogaol  compounds of 4.30% . Ion  with  a value  137 of  m / e:  was  the highest  ions  to be formed and the most stable ion Most compounds isolated by KOH  were phenolic  compounds groups, such as gingerol, shogaol and homovanilil alcohol.Keywords: red ginger, gingerol, extraction, TLC, GC-MS ABSTRAK          Jahe merupakan jenis rempah-rempah yang paling banyak digunakan dalam berbagai resep makanan dan minuman. Jahe biasa digunakan masyarakat sebagai obat masuk angin, gangguan pencernaan, sebagai analgesik, anti-inflamasi, dan lain-lain. Beberapa komponen utama dalam jahe seperti gingerol dan shogaol bersifat antioksidan. Adapun tujuan penelitian ini dilakukan adalah untuk mengisolasi gingerol pada rimpang jahe merah secara optimum dan mengidentifikasinya.Metode penelitian yang digunakan meliputi proses ekstraksi jahe merah dengan menggunakan teknik ekstraksi perkolasi suhu ruang dengan pelarut etanol, dilanjutkan dengan isolasi gingerol dengan penambahan larutan KOH pada konsentrasi 0,1N; 0,5N; 1,0N. Selanjutnya senyawa hasil ekstraksi diidentifikasi dengan menggunakan TLC dan GC-MS. Berdasarkan hasil penelitian dan identifikasi yang telah dilakukan pada sample jahe merah, dapat disimpulkan bahwa kadar air sampel jahe merah yang diteliti adalah sebesar 9,70%, dengan kadar oleoresin sebesar 8,72%. Bobot kasar gingerol terbesar diperoleh pada konsentrasi KOH 1,0N yaitu sebesar 0,61g, sedangkan konsentrasi KOH yang menghasilkan %kemelimpahan gingerol terbesar adalah pada konsentrasi 0,5N, yaitu sebesar 6,13%. Adanya puncak lain selain gingerol menunjukkan bahwa hasil isolasi belum murni. Senyawa homovanilil alkohol selalu terdapat dengan %kemelimpahan terbesar pada setiap sample, yakni 22%, diikuti senyawa shogaol sebesar 4,30%. Ion dengan nilai m/e : 137 adalah ion yang paling banyak terbentuk dan merupakan ion yang stabil. Sebagian besar senyawa yang terisolasi oleh KOH adalah senyawa golongan fenol, seperti gingerol, shogaol dan homovanilil alkohol.Kata kunci : jahe merah, gingerol, ekstraksi, TLC, GC-MS


2010 ◽  
Vol 30 (5) ◽  
pp. 567-568
Author(s):  
Xiao-li LI ◽  
Ming-yuan ZHANG ◽  
Wei-quan ZHAO ◽  
Man Li ◽  
Hai-ying TENG ◽  
...  

2020 ◽  
Vol 16 (7) ◽  
pp. 998-1004
Author(s):  
Aziz H. Rad ◽  
Raana B. Fathipour ◽  
Fariba K. Bidgoli ◽  
Aslan Azizi

Background and Objectives: Tea is considered one of the most consumed drinks around the world and the health benefits of it have recently attracted the attention of different researchers. It has also been proven beneficial in preventing the danger of some diseases like cancer and cardiovascular problems. Further, lipid oxidation is one of the major problems in food products. Considering the above-mentioned issues, the present review focused on various techniques used to extract polyphenols from different kinds of tea, as well as their use in the food industry. Results and Conclusion: Based on our findings in this review, the main components of tea are polyphenols that have health benefits and include catechins, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, gallic acid, flavonoids, flavonols, and theophlavins. From these components, catechin is regarded as the most beneficial component. Many techniques have been discovered and reformed to extract tea compounds such as solvent-based extraction, microwave-assisted water extraction, and ultrasound-assisted extraction techniques. Overall, the microwave-assisted water extraction method is a useful method for extracting tea polyphenols, which may be used in the meat, oil, and dairy industries.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 626
Author(s):  
Siti Hajar Mohamed ◽  
Md. Sohrab Hossain ◽  
Mohamad Haafiz Mohamad Kassim ◽  
Mardiana Idayu Ahmad ◽  
Fatehah Mohd Omar ◽  
...  

There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaodi Wang ◽  
Yongchao Zhang ◽  
Luyao Wang ◽  
Xiaoju Wang ◽  
Qingxi Hou ◽  
...  

AbstractAn efficient separation technology for hydrolysates towards a full valorization of bamboo is still a tough challenge, especially regarding the lignin and lignin-carbohydrate complexes (LCCs). The present study aimed to develop a facile approach using organic solvent extraction for efficiently fractionating the main components of bamboo hydrolysates. The high-purity lignin with only a trace of carbohydrates was first obtained by precipitation of the bamboo hydrolysate. The water-soluble lignin (WSL) fraction was extracted in organic solvent through a three-stage organic solvent extraction process, and the hemicellulosic sugars with increased purity were also collected. Furthermore, a thorough characterization including various NMR techniques (31P, 13C, and 2D-HSQC), GPC, and GC-MS was conducted to the obtained lignin-rich-fractions. It was found that the WSL fraction contained abundant functional groups and tremendous amount of LCC structures. As compared to native LCC of bamboo, the WSL fraction exhibited more typical LCC linkages, i.e. phenyl glycoside linkage, which is the main type of chemical linkage between lignin and carbohydrate in both LCC samples. The results demonstrate that organic phase extraction is a highly efficient protocol for the fractionation of hydrolysate and the isolation of LCC-rich streams possessing great potential applications.


Author(s):  
Wei Li ◽  
Cheng Zheng ◽  
Jian Zhao ◽  
Zhengxiang Ning

A novel microwave assisted multi-stage countercurrent extraction (MAMCE) technique was developed for the extraction of dihydromyricetin from Chinese rattan tea, Ampelopsis grossedentata. The technique combined the advantages of microwave heating and dynamic multi-stage countercurrent extraction and achieved marked improvement in extraction efficiency over microwave assisted batch extraction. Analysis of dihydromyricetin concentrations in the solvent and matrix throughout the extraction process showed that by dividing the extraction into multiple stages and exchanging of solvents between stages, steady and substantial concentration gradients were established between the matrix and solvent, thus enabling the achievement of high extraction efficiency. The yield of dihydromyricetin was significantly affected by temperature, pH, solvent/material ratio and extraction time, and optimal extraction conditions were found to be 80-100°C, at acidic pH with a solvent/material ratio of 25-30 to 1 and extraction time of 5-10 min. With the high extraction efficiency and low usage of extraction solvent, MAMCE could prove to be a promising extraction technique which can be applied to the extraction of dihydromyricentin and other bioactive substances from natural materials.


Sign in / Sign up

Export Citation Format

Share Document