scholarly journals Diversity of Pathogenic Fungi and Disease on Vegetable Crops at Polyculture Systems

2021 ◽  
Vol 13 (2) ◽  
pp. 158-168
Author(s):  
Eddy Tri Sucianto ◽  
Muachiroh Abbas

Vegetables polyculture system is potentially increasing pathogenic fungi diversity because various plant hosts are available. There is no data about patogenic fungi diversity at polyculture vegetable farming in Serang village, District of Karangreja, Purbalingga Regency. This study aimed to determine patogenic fungal diversity and disease percentage caused by the fungi at polyculture vegetable farming in Serang village, District of Karangreja, Purbalingga Regency. This research used purposive random sampling. Infected plants were collected at ten polyculture farming locations and fungal identification was performed at the laboratory. Fungi were identified morphologically based on the signs, symptoms, as well as macroscopic and microscopic characters. The fungi's pathogenity was determined by applying Koch's postulate test. The data were analyzed descriptively through literature comparison. The results showed that seven fungal species were found at polyculture farms in Serang Village. The obtained fungi were Colletotrichum sp., Fusarium sp., Alternaria sp., Septoria sp., Cercospora sp., Botryodiplodia sp., and Nigrospora sp. The lowest damage was 18.24% on tomato fruit infected by Fusarium sp. and the highest was on chili plants which was caused by Colletotrichum sp. The data is the first report for polycuture system. The obtained data has important implication for the management of vegetables farming in Serang Village.

2011 ◽  
Vol 343-344 ◽  
pp. 1212-1216 ◽  
Author(s):  
Cun Kun Chen ◽  
Wen Sheng Wang ◽  
Jia Ning ◽  
Yuan Hui Gao

In order to investigate the reasons for the occurrence of melon disease, according to Koch’s postulates, the pathogenic fungi which caused the disease of postharvest melon“86-1”has been isolated and three kinds of bacterial strain has been identified. By identifying the pathogenicity, results revealed that they are Alternaria sp., Fusarium sp. and Penicillium sp.. They are the major pathogenic fungi which caused the decay of the postharvest Hami melon.


Author(s):  
M. A. Nitu ◽  
M. Rahaman ◽  
F. M. Aminuzzaman ◽  
N. Sultana

Microflora from potato rhizosphere soil was isolated from different potato fields of Bangladesh. Seventeen soil samples were analyzed for the presence of microflora in selected potato field soils. Seven fungal species and one bacterium species were morphologically characterized using soil dilution and streak plate methods. The predominant fungi isolated including Alternaria sp., Aspergillus sp., Penicillium sp., Rhizopus sp., Bipolaris sp., Phytophthora sp., Fusarium sp. and one bacterium was identified as Ralstonia solanacearum. Individual colonies of fungi and bacteria were counted on Potato Dextrose Agar (PDA), V8 juice Agar and their presence in soil was compared in respect of different locations of potato fields. The occurrence of Phytophthora sp. was medium in Tongibari and lower in Singair Union, Sonargaon, Matlab Dakshin, Gobindaganj, Palashbari, Gopinathpur and Bagmara. The highest counts of R. solanacearum were found in Singair Union, Tongibari and Daudkandi and the lowest counts were made in Palashbari and Bagmara. This was the first reported examination of the microbial diversity of soil microflora in some selected potato fields of Bangladesh.


2021 ◽  
Vol 15 (3) ◽  
pp. 2
Author(s):  
Wilfridus Adyatma Putranto ◽  
Rully Adi Nugroho ◽  
Petrus Sunu Hardiyanta ◽  
Desti Christian Cahyaningrum

The pathogenic fungi, such as Fusarium in the rhizosphere of tomato (Solanum lycopersicum) negatively affects the yield and quality of the plant. A number of biological control agents have been used for protecting tomato plants against wilt diseases including various fungal species. The objective of this study was to evaluate  the antagonism effects of Trichoderma atroviride and T. harzianum against the pathogen Fusarium sp. associated with tomato wilt. In this study, the antagonism of these Trichoderma spp. against the Fusarium sp. was tested in vitro by the dual culture technique, and the percentage inhibition of radial growth (PIRG) and the antagonism reaction (scale 1-5) were evaluated. The results showed that T. atroviride and T. harzianum led to 70.8% PIRG and scale 1 antagonism reaction, and  40.6% PIRG and scale 3 antagonism reaction against Fusarium sp. associated with tomato wilt after 7 days of incubation, respectively. These results indicate that application of T. atroviride and T. harzianum may be promising approach for biological control of Fusarium wilt of tomato and may play an important role in sustainable agriculture.


Author(s):  
S. Pahnwar ◽  
M.I. Khaskheli ◽  
A.J. Khaskheli ◽  
K.H. Wagan ◽  
G.M. Thebho ◽  
...  

Background: Altenaria species are posing major threat to vegetable crops nowadays, thus it is of utmost importance to identify its different species, so that potential control measures may be explored. Methods: The isolation and identification of different fungi was conducted from major Kharif vegetables, tomato, chilli and eggplant. Samples showing typical symptoms of fruit rot and leaf spot were collected from fields and then pathogens were isolated and identified at laboratory using standard procedures. Result: The total of 07 fungal species, Alternaria alternata, A. solani, Aspergillus flavus, A. niger, Fusarium oxysporum, Pencillium sp. and Rhizopus stolonifer isolated from tomato fruit rot. Similarly, 07 fungi viz; A. alternata, A. tenuissima, A. flavus, A. niger, Colletotrichum capisi, Penicillium sp. and R. stolonifer from chilli fruit rot and 06 fungi viz; A. alternata, A. flavus, A. niger, F. solani, Penicillium sp. and R. stolonifer from eggplant leaf spots were isolated. Significantly highest infection frequency was recorded for A. solani (48.83%) and A. tenuissima (44%) from tomato and chilli fruit rot, respectively. From eggplant leaf spot it was significantly highest for A. alternata (34.5%). Study concludes that 03 species, A. solani, A. tenuissima and A. alternata, dominantly damaged tomato, chilli fruits and eggplant leaves.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
R. Soelistijono

This study examines the effectiveness of mycorrhizal Rhizoctonia resistance induction in Phalaenopsis amabilis against Fusarium sp. Fusarium solani is known as pathogens that attack many orchids P. amabilis (Chung et al., 2011) compared to other pathogenic fungi. Attack of Fusarium sp. will cause rot and yellow colored leaves. Until now there has been known as a biological control orchid against Fusarium sp. In this study tested the endurance locations in Sleman and Surakarta to see the effectiveness of a good orchid growth induced by Rhizoctonia mycorrhizal or not to attack by Fusarium sp. The results of the study showed that mycorrhizal Rhizoctonia able to inhibit the attack of Fusarium sp. It is shown by the value of the index of disease resistance  (DSI) in P. amabilis orchid mycorrhizal Rhizoctonia induced lower than that not induced. Mycorrhizal Rhizoctonia induction results in Sleman provide a more real than mycorrhizal Rhizoctonia induction in Surakarta.


2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ammarah Hami ◽  
Rovidha S. Rasool ◽  
Nisar A. Khan ◽  
Sheikh Mansoor ◽  
Mudasir A. Mir ◽  
...  

AbstractChilli (Capsicum annuum L.) is one of the most significant vegetable and spice crop. Wilt caused by Fusarium Sp. has emerged as a serious problem in chilli production. Internal transcribed spacer (ITS) region is widely used as a DNA barcoding marker to characterize the diversity and composition of Fusarium communities. ITS regions are heavily used in both molecular methods and ecological studies of fungi, because of its high degree of interspecific variability, conserved primer sites and multiple copy nature in the genome. In the present study we focused on morphological and molecular characterization of pathogen causing chilli wilt. Chilli plants were collected from four districts of Kashmir valley of Himalayan region. Pathogens were isolated from infected root and stem of the plants. Isolated pathogens were subjected to DNA extraction and PCR amplification. The amplified product was sequenced and three different wilt causing fungal isolates were obtained which are reported in the current investigation. In addition to Fusarium oxysporum and Fusarium solani, a new fungal species was found in association with the chilli wilt in Kashmir valley viz., Fusarium equiseti that has never been reported before from this region. The studies were confirmed by pathogenicity test and re-confirmation by DNA barcoding.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 901 ◽  
Author(s):  
Asiya Gusa ◽  
Sue Jinks-Robertson

Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 483 ◽  
Author(s):  
Shun-Zhi Liu ◽  
Xia Yan ◽  
Xi-Xiang Tang ◽  
Jin-Guo Lin ◽  
Ying-Kun Qiu

Fusarium solani H915 is a fungus derived from mangrove sediments. From its ethyl acetate extract, a new alkenoic acid, fusaridioic acid A (1), three new bis-alkenoic acid esters, namely, fusariumester A1 (2), A2 (3) and B (4), together with three known compounds (5–7), were isolated. The structures of the new compounds were comprehensively characterized by high resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). Additionally, the antifungal activities against tea pathogenic fungi Pestalotiopsis theae and Colletotrichum gloeosporioides were studied. The new compound, 4, containing a β-lactone ring, exhibited moderate inhibitory activity against P. theae, with an MIC of 50 μg/disc. Hymeglusin (6), a typical β-lactone antibiotic and a terpenoid alkaloid, equisetin (7), exhibited potent inhibitory activities against both fungal species. The isolated compounds were evaluated for their effects on zebrafish embryo development. Equisetin clearly imparted toxic effect on zebrafish even at low concentrations. However, none of the alkenoic acid derivatives exhibited significant toxicity to zebrafish eggs, embryos, or larvae. Thus, the β-lactone containing alkenoic acid derivatives from F. solani H915 are low in toxicity and are potent antifungal agents against tea pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document