scholarly journals Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny

2015 ◽  
Vol 224 (3) ◽  
pp. 315-325 ◽  
Author(s):  
P C Lisboa ◽  
E de Oliveira ◽  
A C Manhães ◽  
A P Santos-Silva ◽  
C R Pinheiro ◽  
...  

Postnatal nicotine exposure leads to obesity and hypothyroidism in adulthood. We studied the effects of maternal nicotine exposure during lactation on thyroid hormone (TH) metabolism and function in adult offspring. Lactating rats received implants of osmotic minipumps releasing nicotine (NIC, 6 mg/kg per day s.c.) or saline (control) from postnatal days 2 to 16. Offspring were killed at 180 days. We measured types 1 and 2 deiodinase activity and mRNA, mitochondrial α-glycerol-3-phosphate dehydrogenase (mGPD) activity, TH receptor (TR), uncoupling protein 1 (UCP1), hypothalamic TRH, pituitary TSH, andin vitroTRH-stimulated TSH secretion. Expression of deiodinase mRNAs followed the same profile as that of the enzymatic activity. NIC exposure caused lower 5′-D1 and mGPD activities; lower TRβ1 content in liver as well as lower 5′-D1 activity in muscle; and higher 5′-D2 activity in brown adipose tissue (BAT), heart, and testis, which are in accordance with hypothyroidism. Although deiodinase activities were not changed in the hypothalamus, pituitary, and thyroid of NIC offspring, UCP1 expression was lower in BAT. Levels of both TRH and TSH were lower in offspring exposed to NIC, which presented higher basalin vitroTSH secretion, which was not increased in response to TRH. Thus, the hypothyroidism in NIC offspring at adulthood was caused, in part, byin vivoTRH–TSH suppression and lower sensitivity to TRH. Despite the hypothyroid status of peripheral tissues, these animals seem to develop an adaptive mechanism to preserve thyroxine to triiodothyronine conversion in central tissues.

2014 ◽  
Vol 306 (4) ◽  
pp. E363-E372 ◽  
Author(s):  
Ruidan Xue ◽  
Yun Wan ◽  
Shuo Zhang ◽  
Qiongyue Zhang ◽  
Hongying Ye ◽  
...  

There are two different types of fat present in mammals: white adipose tissue, the primary site of energy storage, and brown adipose tissue, which is specializes in energy expenditure. Factors that specify the developmental fate and function of brown fat are poorly understood. Bone morphogenic proteins (BMPs) play an important role in adipogenesis. While BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage, BMP7 triggers commitment of progenitor cells to a brown adipocyte lineage and activates brown adipogenesis. To investigate the differential effects of BMPs on the development of adipocytes, C3H10T1/2 pluripotent cells were pretreated with BMP4 and BMP7, followed by different adipogenic induction cocktails. Both BMP4 and BMP7 unexpectedly activated a full program of brown adipogenesis, including induction of the brown fat-defining marker uncoupling protein-1 (UCP1), increasing the expression of early regulators of brown fat fate PRDM16 (PR domain-containing 16) and induction of mitochondrial biogenesis and function. Implantation of BMP4-pretreated C3H10T1/2 cells into nude mice resulted in the development of adipose tissue depots containing UCP1-positive brown adipocytes. Interestingly, BMP4 could also induce brown fat-like adipocytes in both white and brown preadipocytes, thereby decreasing the classical brown adipocyte marker Zic1 and increasing the recently identified beige adipocyte marker TMEM26. The data indicate an important role for BMP4 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro and offers a potentially new therapeutic approach for the treatment of obesity.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


2001 ◽  
pp. 59-64 ◽  
Author(s):  
F Bogazzi ◽  
L Bartalena ◽  
S Brogioni ◽  
A Burelli ◽  
F Raggi ◽  
...  

OBJECTIVE: To evaluate the molecular mechanisms of the inhibitory effects of amiodarone and its active metabolite, desethylamiodarone (DEA) on thyroid hormone action. MATERIALS AND METHODS: The reporter construct ME-TRE-TK-CAT or TSHbeta-TRE-TK-CAT, containing the nucleotide sequence of the thyroid hormone response element (TRE) of either malic enzyme (ME) or TSHbeta genes, thymidine kinase (TK) and chloramphenicol acetyltransferase (CAT) was transiently transfected with RSV-TRbeta into NIH3T3 cells. Gel mobility shift assay (EMSA) was performed using labelled synthetic oligonucleotides containing the ME-TRE and in vitro translated thyroid hormone receptor (TR)beta. RESULTS: Addition of 1 micromol/l T4 or T3 to the culture medium increased the basal level of ME-TRE-TK-CAT by 4.5- and 12.5-fold respectively. Amiodarone or DEA (1 micromol/l) increased CAT activity by 1.4- and 3.4-fold respectively. Combination of DEA with T4 or T3 increased CAT activity by 9.4- and 18.9-fold respectively. These data suggested that DEA, but not amiodarone, had a synergistic effect with thyroid hormone on ME-TRE, rather than the postulated inhibitory action; we supposed that this was due to overexpression of the transfected TR into the cells. When the amount of RSV-TRbeta was reduced until it was present in a limited amount, allowing competition between thyroid hormone and the drug, addition of 1 micromol/l DEA decreased the T3-dependent expression of the reporter gene by 50%. The inhibitory effect of DEA was partially due to a reduced binding of TR to ME-TRE, as assessed by EMSA. DEA activated the TR-dependent down-regulation by the negative TSH-TRE, although at low level (35% of the down-regulation produced by T3), whereas amiodarone was ineffective. Addition of 1 micromol/l DEA to T3-containing medium reduced the T3-TR-mediated down-regulation of TSH-TRE to 55%. CONCLUSIONS: Our results demonstrate that DEA, but not amiodarone, exerts a direct, although weak, effect on genes that are regulated by thyroid hormone. High concentrations of DEA antagonize the action of T3 at the molecular level, interacting with TR and reducing its binding to TREs. This effect may contribute to the hypothyroid-like effect observed in peripheral tissues of patients receiving amiodarone treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saki Takayanagi ◽  
Kengo Watanabe ◽  
Takeshi Maruyama ◽  
Motoyuki Ogawa ◽  
Kazuhiro Morishita ◽  
...  

AbstractRecent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


2021 ◽  
Vol 118 (23) ◽  
pp. e2104650118
Author(s):  
Jessica Cannavino ◽  
Mengle Shao ◽  
Yu A. An ◽  
Svetlana Bezprozvannaya ◽  
Shiuhwei Chen ◽  
...  

Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A45-A46
Author(s):  
Evangelia Evelyn Tsakiridis ◽  
Marisa Morrow ◽  
Andrea Llanos ◽  
Bo Wang ◽  
Alison Holloway ◽  
...  

Abstract Deltamethrin is a commonly used pesticide for the control of mosquito populations. Despite widespread use, the effects of deltamethrin on adiposity and glucose homeostasis have been equivocal with some studies showing increased, decreased and no effect on adiposity and glycemic control. However, no study to date has investigated the effect of deltamethrin in mice housed at thermoneutral temperatures, which is important for modelling metabolic diseases in rodents due to reduced thermal stress and constitutive activation of brown adipose tissue. In the current study we demonstrate for the first time that deltamethrin reduces uncoupling protein-1 expression in brown adipocytes cultured in vitro at concentrations as low as 1pm. Meanwhile, in-vivo deltamethrin does not appear to alter glycemic control or promote adiposity at exposures equivalent to 0.01, 0.1 or 1.0 mg/kg/day. Together, our study demonstrates environmentally relevant exposure to deltamethrin does not exacerbate diet induced obesity or insulin resistance.


1991 ◽  
Vol 261 (2) ◽  
pp. E227-E232 ◽  
Author(s):  
J. P. Schroder-van der Elst ◽  
D. van der Heide ◽  
J. Kohrle

In vitro, the synthetic flavonoid EMD 21388 appears to be a potent inhibitor of thyroxine (T4) 5'-deiodinase and diminishes binding of T4 to transthyretin. In this study, in vivo effects of long-term administration of EMD 21388 on thyroid hormone production and metabolism were investigated. Intact male rats received EMD 21388 (20 mumol.kg body wt-1.rat-1.day-1) for 14 days. [125I]T4 and 3,5,3'-[131I]triiodotyronine (T3) were infused continuously and intravenously in a double-isotope protocol for the last 10 and 7 days, respectively. EMD 21388 decreased plasma thyroid hormone concentrations, but thyrotropin levels in plasma and pituitary did not change. Plasma clearance rates for T4 and T3 increased. Thyroidal T4 secretion was diminished, but T3 secretion was elevated. Extrathyroidal T3 production by 5'-deiodination was lower. T4 concentrations were markedly lower in all tissues investigated. Total tissue T3 was lower in brown adipose tissue, brain, cerebellum, and pituitary, tissues that express the type II 5'-deiodinase isozyme due to decreased local T3 production. Most tissues showed increased tissue/plasma ratios for T4 and T3. These results indicate that this flavonoid diminished T4 and increased T3 secretion by the thyroid, probably in analogy with other natural flavonoids, by interference with one or several steps between iodide uptake, organification, and hormone synthesis.


1983 ◽  
Vol 245 (1) ◽  
pp. E32-E37
Author(s):  
H. Ikeda ◽  
M. A. Greer

Five adenohypophyses from donors of the same strain, age, and sex were transplanted under the renal capsule of young adult female rats. At least 3 wk later, enzymatically dispersed cells from eutopic or heterotopic adenohypophyses from the same rat were perifused in vitro in a small chamber. Thyrotropin (TSH) and prolactin (PRL) secretion per 10(6) cells were significantly less from heterotopic than from eutopic cells under all conditions. In cells from euthyroid animals, TRH induced TSH secretion only in the eutopic cells but induced PRL secretion in both eutopic and heterotopic cells. Hypothyroidism increased TRH-induced TSH secretion and content in the cell lysate in both eutopic and heterotopic cells but increased TRH-induced PRL secretion only in the eutopic cells. The increase in TSH secretion induced by hypothyroidism in the heterotopic cells was of borderline statistical significance. The inability of TRH to induce TSH secretion in heterotopic pituitary cells from euthyroid rats may be due to a lower set point for thyroid hormone inhibition of TSH secretion in the heterotopic thyrotrophs. Heterotopic pituitary TSH secretion is probably suppressed by the normal plasma thyroid hormone concentration maintained by the eutopic pituitary and may be stimulated by TRH only in the presence of a subnormal plasma thyroid hormone concentration.


1998 ◽  
Vol 274 (4) ◽  
pp. E726-E736 ◽  
Author(s):  
Annette M. Gabaldón ◽  
Roger B. McDonald ◽  
Barbara A. Horwitz

We previously reported greater age-related attenuation of cold-induced thermoregulation and brown adipose tissue thermogenic capacity in male vs. female F344 rats. With onset of the rapid weight loss that occurs near the end of the lifespan, this age-related attenuation becomes severe. We refer to this “end-of-life” physiological state of older rats as senescence. Here, we measured oxygen consumption of isolated brown adipocytes and found no age (6 vs. 12 vs. 26 mo) or gender effects on maximal norepinephrine (NE)- or CL-316,243 (β3-adrenergic agonist)-induced responses. In contrast, brown adipocytes from 22- to 26-mo-old senescent rats (males and females) consumed 51–60% less oxygen during maximal stimulation with NE and CL-316,243 than did cells from 26-mo-old presenescent rats. This attenuation was associated with lower (65–72%) uncoupling protein 1 concentrations but no alterations in NE-induced cAMP levels or lipolysis. Our data indicate that senescence, but not chronological age, significantly impacts NE-/β3-mediated thermogenesis of isolated brown adipocytes and that this effect involves altered mitochondrial rather than altered membrane or cytosol events.


Sign in / Sign up

Export Citation Format

Share Document