scholarly journals Elucidating the role of pigment epithelium-derived factor (PEDF) in metabolic PCOS models

2020 ◽  
Vol 244 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Michal Silber ◽  
Irit Miller ◽  
Hadas Bar-Joseph ◽  
Ido Ben-Ami ◽  
Ruth Shalgi

PCOS is the most common endocrinopathy in women; associated with obesity and insulin resistance (IR). IR leads to accumulation of advanced-glycation-end-products (AGEs) and their receptor, RAGE. PCOS patients have increased levels of vascular endothelial growth factor (VEGF), interleukin 6/8 (IL-6/8) and anti-Mϋllerian-hormone (AMH). PEDF is a secreted-glycoprotein known for its anti-angiogenic and anti-inflammatory properties. We aimed to elucidate the role of PEDF in the pathogenesis and treatment of PCOS. We used a prenatal PCOS mouse model and fed the female offspring a high-fat diet, inducing metabolic PCOS (met.PCOS) characteristics. Female offspring were divided into three groups: control; met.PCOS; met.PCOS + recombinant PEDF (rPEDF). Met.PCOS mice gained more weight, had elevated serum IL-6 and higher mRNA levels of AMH, PEDF and RAGE in their granulosa cells (GCs) than met.PCOS + rPEDF mice. An in vitro Met.PCOS model in human GCs (KGN) line was induced by prolonged incubation with insulin/AGEs, causing development of IR. Under the same conditions, we observed an elevation of VEGF, IL-6/8 mRNAs, concomitantly with an increase in PEDF mRNA, intracellular protein levels, and an elevation of PEDF receptors (PEDF-Rs) mRNA and protein. Simultaneously, a reduction in the secretion of PEDF from GCs, was measured in the medium. The addition of rPEDF (5 nM) activated P38 signaling, implying that PEDF-Rs maintained functionality, and negated AGE-induced elevation of IL-6/8 and VEGF mRNAs. Decreased PEDF secretion may be a major contributor to hyperangiogenesis and chronic inflammation, which lie at the core of PCOS pathogenesis. rPEDF treatment may restore physiological angiogenesis inflammatory balance, thus suggesting a potential therapeutic role in PCOS.

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2021 ◽  
Author(s):  
Xiansheng Huang ◽  
Yiqi Zhang ◽  
Wenqiang Zhu ◽  
Piaopiao Huang ◽  
Jingmei Xiao ◽  
...  

Olanzapine, an antipsychotic drug, was reported to induce hypertriglyceridemia, whereas the underlying mechanism remains incompletely understood. This study was to determine the role of apolipoprotein A5 (apoA5) in olanzapine-induced hypertriglyceridemia. In this study, 36 drug-naive and first-episode schizophrenic adult patients (aged 18-60 years) in a multi-center clinical trial (ClinicalTrials.gov NCT03451734) were enrolled. Before and after olanzapine treatment, plasma lipid and apoA5 levels were detected. Moreover, 21 female C57BL/6 J mice (8 weeks old) were divided into 3 groups (n = 7/each group): low-dose olanzapine (3 mg/kg/day), high-dose olanzapine (6 mg/kg/day) and control group. After 6 weeks, plasma glucose, lipids and apoA5 as well as hepatic apoA5 protein and mRNA expression in these animals were detected. In our study in vitro, primary mouse hepatocytes and HepG2 cells were treated with olanzapine of 25, 50, 100 μmol/L, respectively. After 24 hours, apoA5 protein and mRNA levels in hepatocytes were detected. Our study showed that olanzapine treatment significantly increased plasma triglyceride levels and decreased plasma apoA5 levels in these schizophrenic patients. A significant negative correlation was indicated between plasma triglyceride and apoA5 levels in these patients. Consistently, olanzapine dose-dependently increased plasma triglyceride levels and decreased plasma apoA5 levels in mice. Surprisingly, an elevation of hepatic apoA5 protein levels was detected in mice after olanzapine treatment, with no changes of APOA5 mRNA expression. Likewise, olanzapine increased apoA5 protein levels in hepatocytes in vitro, without changes of hepatocyte APOA5 mRNA. Therefore, our study provides the first evidence about the role of apoA5 in olanzapine-induced hypertriglyceridemia. Furthermore, plasma apoA5 reduction, resulting in hypertriglyceridemia, could be attributed to olanzapine-induced inhibition of hepatic apoA5 secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroyuki Yajima ◽  
Izuki Amano ◽  
Sumiyasu Ishii ◽  
Tetsushi Sadakata ◽  
Wataru Miyazaki ◽  
...  

Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3’-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Heng Miao ◽  
Xianru Hou ◽  
De-Kuang Hwang ◽  
Yong Tao

Objective. To determine the expression of cytokines in the iris of patients with neovascular glaucoma (NVG). Methods. Patients with NVG associated with proliferative diabetic retinopathy (PDR, group 1) or central retinal vein occlusion (CRVO, group 2) who had undergone surgical treatment were enrolled. Patients with primary open-angle glaucoma requiring surgical treatment were included in the control group (group 3). All iris specimens were obtained during trabeculectomy, 7 days after intravitreal injections of ranibizumab. The messenger RNA (mRNA) and protein levels of three target cytokines—vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and pigment epithelium-derived factor (PEDF)—in the iris were analyzed and compared. Results. We included 39 eyes from 39 patients (12, 15, and 12 in groups 1, 2, and 3, resp.). The protein and mRNA levels of PEDF were higher in two NVG groups. The protein levels, but not mRNA level, of bFGF were higher in the two NVG groups. The protein and mRNA levels of VEGF were similar in the three groups. Conclusions. The protein level of bFGF increased in the irises of the NVG patients was not expressed by the iris itself, whereas PEDF may be expressed by the iris tissue in these patients.


2014 ◽  
Vol 306 (11) ◽  
pp. F1335-F1347 ◽  
Author(s):  
Keisuke Omote ◽  
Tomohito Gohda ◽  
Maki Murakoshi ◽  
Yu Sasaki ◽  
Saiko Kazuno ◽  
...  

Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-Ay mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-Ay mice were significantly decreased compared with untreated KK-Ay mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Roberta Sanguineti ◽  
Alessandra Puddu ◽  
Massimo Nicolò ◽  
Carlo Enrico Traverso ◽  
Renzo Cordera ◽  
...  

Vascular endothelial growth factor-A (VEGF-A) has a pathologic role in microvascular diabetic complication, such as diabetic retinopathy (DR). miR-126 plays an important role in vascular development and angiogenesis by regulating the expression of VEGF-A. Since levels of miR-126 have been found downregulated in diabetes, this study is aimed at investigating whether hyperglycemia affects expression of miR-126 in a retinal pigment epithelium cell line. ARPE-19 cells were transfected with miR-126 inhibitor or with miR-126 mimic and the respective scramble negative control. After 24 hours, medium was replaced and cells were cultured for 24 hours in normal (CTR) or diabetic condition (HG). Then, we analyzed mRNA levels of miR-126, VEGF-A, PI3KR2, and SPRED1. We also evaluated protein amount of HIF-1α, PI3KR2, and SPRED1 and VEGF-A secretion. The results showed that exposure of ARPE-19 cells to HG significantly decreased miR-126 levels; mRNA levels of VEGF-A and PI3KR2 were inversely correlated with those of miR-126. Overexpression of miR-126 under HG restored HIF-1α expression and VEGF-A secretion to the level of CTR cells. These results indicate that reduced levels of miR-126 may contribute to DR progression by increasing expression of VEGF-A in RPE cells. In addition, we provide evidence that upregulation of miR-126 in RPE cells counteracts the rise of VEGF-A secretion induced by hyperglycemia. In conclusion, our data support a role of miR-126 mimic-approach in counteracting proangiogenic effects of hyperglycemia.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 319-329 ◽  
Author(s):  
Michelle M Baltes-Breitwisch ◽  
Robin A Artac ◽  
Rebecca C Bott ◽  
Renee M McFee ◽  
Jill G Kerl ◽  
...  

Vascular endothelial growth factor A (VEGFA) plays a role in both angiogenesis and seminiferous cord formation, and alternative splicing of theVegfagene produces both proangiogenic isoforms and antiangiogenic isoforms (B-isoforms). The objectives of this study were to evaluate the expression of pro- and antiangiogenic isoforms during testis development and to determine the role of VEGFA isoforms in testis morphogenesis. Quantitative RT-PCR determined thatVegfa_165bmRNA was most abundant between embryonic days 13.5 and 16 (E13.5 and 16;P<0.05). Compared with ovarian mRNA levels,Vegfa_120was more abundant at E13–14 (P<0.05),Vegfa_164was less abundant at E13 (P<0.05), andVegfa_165btended to be less abundant at E13 (P<0.09) in testes. Immunohistochemical staining localized antiangiogenic isoforms to subsets of germ cells at E14–16, and western blot analysis revealed similar protein levels for VEGFA_165B, VEGFA_189B, and VEGFA_206B at this time point. Treatment of E13 organ culture testes with VEGFA_120, VEGFA_164, and an antibody to antiangiogenic isoforms (anti-VEGFAxxxB) resulted in less organized and defined seminiferous cords compared with paired controls. In addition, 50 ng/ml VEGFA_120 and VEGFA_164 treatments increased vascular density in cultured testes by 60 and 48% respectively, and treatment with VEGFAxxxB antibody increased vascular density by 76% in testes (0.5 ng/ml) and 81% in ovaries (5 ng/ml) compared with controls (P<0.05). In conclusion, both pro- and antiangiogenic VEGFA isoforms are involved in the development of vasculature and seminiferous cords in rat testes, and differential expression of these isoforms may be important for normal gonadal development.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shangyue Zhang ◽  
Yuerong Zhang ◽  
Xinyu Zhang ◽  
Chenghua Luo ◽  
Yan Cao ◽  
...  

The kidneys are important organs that are susceptible to aging. Hyperhomocysteinemia (HHcy) is a risk factor for nephropathy and is associated with chronic nephritis, purpuric nephritis, and nephrotic syndrome. Numerous studies have shown that elevated serum homocysteine levels can damage the kidneys; however, the underlying mechanism of HHcy on kidney damage remains unclear. In this study, we make use of a diet-induced HHcy rat model and in vitro cell culture to explore the role of autophagy in HHcy-induced renal aging and further explored the underlying mechanism. We demonstrated that HHcy led to the development of renal aging. Promoted kidney aging and autophagic insufficiency were involved in HHcy-induced renal aging. HHcy decreased the expression of transcription factor EB (TFEB), the key transcription factor of autophagy-related genes in renal tissue. Further experiments showed that nitrative stress levels were increased in the kidney of HHcy rats. Interestingly, pretreatment with the peroxynitrite (ONOO-) scavenger FeTMPyP not only reduced the Hcy-induced nitrative stress in vitro but also partially attenuated the decrease in TFEB in both protein and mRNA levels. Moreover, our results indicated that HHcy reduced TFEB expression and inhibited TFEB-mediated autophagy activation by elevating nitrative stress. In conclusion, this study showed an important role of autophagic insufficiency in HHcy-induced renal aging, in which downregulation of TFEB plays a major role. Furthermore, downexpression of TFEB was associated with increased nitrative stress in HHcy. This study provides a novel insight into the mechanism and therapeutic strategy for renal aging.


2021 ◽  
Vol 53 (1) ◽  
pp. 125-135
Author(s):  
Priti Azad ◽  
Francisco C. Villafuerte ◽  
Daniela Bermudez ◽  
Gargi Patel ◽  
Gabriel G. Haddad

AbstractMonge’s disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.


Sign in / Sign up

Export Citation Format

Share Document