scholarly journals Nonhormonal therapy for endometriosis based on energy metabolism regulation

Author(s):  
Hiroshi Kobayashi ◽  
Hiroshi Shigetomi ◽  
Shogo Imanaka

Objectives: Ovarian function suppression is the current pharmacotherapy of endometriosis with limited benefit and adverse effects. New therapeutic strategies other than hormonal therapy are developed based on the molecular mechanisms involved in the hypoxic and oxidative stress environments and metabolism unique to endometriosis. Methods: A literature search was performed between January 2000 and March 2021 in the PubMed database using a combination of specific terms. Results: Endometriosis-associated metabolic changes have been organized into four hallmarks: (1) glucose uptake, (2) aerobic glycolysis, (3) lactate production and accumulation, and (4) metabolic conversion from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Endometriotic cells favor glycolytic metabolism over mitochondrial OXPHOS to produce essential energy for cell survival. Hypoxia, a common feature of the endometriosis environment, is a key player in this metabolic conversion, which may lead to glucose transporter overexpression, pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase kinase A (LDHA) activation, and pyruvate dehydrogenase complex inactivation. Evading mitochondrial OXPHOS mitigates excessive generation of reactive oxygen species (ROS) that may trigger cell death. Therefore, the coinactivation of LDHA and PDK1 can induce the accumulation of mitochondrial ROS by converting energy metabolism to mitochondrial OXPHOS, causing endometriotic cell death. Conclusion: Metabolic pattern reconstruction in endometriotic lesions is a critical factor in cell survival and disease progression. One therapeutic strategy that may avoid hormone manipulation is focused on mitigating metabolic changes that have been detected in cells/tissues from women with endometriosis.

2020 ◽  
Vol 21 (17) ◽  
pp. 6021 ◽  
Author(s):  
Choong-Hwan Kwak ◽  
Ling Jin ◽  
Jung Ho Han ◽  
Chang Woo Han ◽  
Eonmi Kim ◽  
...  

In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.


Author(s):  
Maria T. Nuzzo ◽  
Marco Fiocchetti ◽  
Paolo Ascenzi ◽  
Maria Marino

Author(s):  
Leslie Iversen

The endocannabinoids are part of a large family of lipid signaling molecules derived from arachidonic acid, including the prostaglandins and leukotrienes, which are important mediators of inflammation. Far less is known about the newer members of the endocannabinoid group, and it remains unclear whether they all play important functional roles. This chapter reviews the multiple members of this family and their biosynthesis and inactivation. Physiological functions, including retrograde synaptic signaling, control of energy metabolism, regulation of pain sensitivity, and cardiovascular control, are discussed. In addition, the chapter reports the synthesis of novel agonists, antagonists, and compounds inhibiting endocannabinoid inactivation as novel medicines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ling Jin ◽  
Eun-Yeong Kim ◽  
Tae-Wook Chung ◽  
Chang Woo Han ◽  
So Young Park ◽  
...  

AbstractMost cancer cells primarily produce their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen. Pyruvate dehydrogenase kinase (PDK) 1, an enzyme responsible for aerobic glycolysis via phosphorylating and inactivating pyruvate dehydrogenase (PDH) complex, is commonly overexpressed in tumors and recognized as a therapeutic target in colorectal cancer. Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata Bunge (Compositae). Here, we report that HsA is a PDK1 inhibitor can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro. Computational simulation and biochemical assays showed that HsA directly binds to the lipoamide-binding site of PDK1, and subsequently inhibits the interaction of PDK1 with the E2 subunit of PDH complex. As a result of PDK1 inhibition, lactate production was decreased, but oxygen consumption was increased. Mitochondrial ROS levels and mitochondrial damage were also increased. Consistent with these observations, the apoptosis of colorectal cancer cells was promoted by HsA with enhanced activation of caspase-3 and -9. These results suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.


2021 ◽  
Vol 22 (2) ◽  
pp. 764
Author(s):  
Russel J. Reiter ◽  
Ramaswamy Sharma ◽  
Sergio Rosales-Corral

Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin’s function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin’s action in switching the metabolic phenotype of cells.


Oncogenesis ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Yu Geon Lee ◽  
Hui Won Kim ◽  
Yeji Nam ◽  
Kyeong Jin Shin ◽  
Yu Jin Lee ◽  
...  

AbstractMitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qiuyun Yuan ◽  
Wanchun Yang ◽  
Shuxin Zhang ◽  
Tengfei Li ◽  
Mingrong Zuo ◽  
...  

Abstract Background Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. Methods Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. Results Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. Conclusion Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1725-1740
Author(s):  
Rachel T Cox ◽  
Donald G McEwen ◽  
Denise L Myster ◽  
Robert J Duronio ◽  
Joseph Loureiro ◽  
...  

Abstract During development signaling pathways coordinate cell fates and regulate the choice between cell survival or programmed cell death. The well-conserved Wingless/Wnt pathway is required for many developmental decisions in all animals. One transducer of the Wingless/Wnt signal is Armadillo/β-catenin. Drosophila Armadillo not only transduces Wingless signal, but also acts in cell-cell adhesion via its role in the epithelial adherens junction. While many components of both the Wingless/Wnt signaling pathway and adherens junctions are known, both processes are complex, suggesting that unknown components influence signaling and junctions. We carried out a genetic modifier screen to identify some of these components by screening for mutations that can suppress the armadillo mutant phenotype. We identified 12 regions of the genome that have this property. From these regions and from additional candidate genes tested we identified four genes that suppress arm: dTCF, puckered, head involution defective (hid), and Dpresenilin. We further investigated the interaction with hid, a known regulator of programmed cell death. Our data suggest that Wg signaling modulates Hid activity and that Hid regulates programmed cell death in a dose-sensitive fashion.


Sign in / Sign up

Export Citation Format

Share Document