scholarly journals Mitochondrial differentiation and oxidative phosphorylation system capacity in rat embryo during placentation period

Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 147-154 ◽  
Author(s):  
M P Alcolea ◽  
B Colom ◽  
I Lladó ◽  
F J García-Palmer ◽  
M Gianotti

Mitochondrial biogenesis and function are essential for proper embryo development; however, these processes have not been further studied during the placentation period, when important oxidative metabolism activation is taking place. Thus, the aim of the present study was to investigate the oxidative phosphorylation system (OXPHOS) enzymatic activities as well as the expression of genes involved in the coordinated regulation of both mitochondrial and nuclear genomes (peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factors 1 and 2, mitochondrial single-strand DNA-binding protein, mitochondrial transcription factor A), and mitochondrial function (cytochrome c oxidase subunit IV, cytochrome c oxidase subunit I and β-ATP phosphohydrolase) in rat embryo throughout the placentation period (gestational days 11, 12 and 13). Our results reflect that embryo mitochondria were enhancing their OXPHOS potential capacities, pointing out that embryo mitochondria become more differentiated during the placentation period. Besides, the current findings show that the mRNAs of the nuclear genes involved in mitochondrial biogenesis were downregulated, whereas their protein content together with the mitochondrial DNA expression were upregulated throughout the period studied. These data indicate that the molecular regulation of the mitochondrial differentiation process during placentation involves a post-transcriptional activation of the nuclear-encoded genes that would lead to an increase in both the nuclear- and mitochondrial-encoded proteins responsible for the mitochondrial biogenic process. As a result, embryo mitochondria would reach a more differentiated stage with a more efficient oxidative metabolism that would facilitate the important embryo growth during the second half of the pregnancy.

2015 ◽  
Vol 37 (6) ◽  
pp. 2246-2256 ◽  
Author(s):  
Shenghui Lin ◽  
Xiaoting Wu ◽  
Lichan Tao ◽  
Yihua Bei ◽  
Haifeng Zhang ◽  
...  

Background/Aims: A traditional Chinese medicine, Qiliqiangxin (QLQX) has been identified to perform protective effects on myocardium energy metabolism in mice with acute myocardial infarction, though the effects of QLQX on myocardial mitochondrial biogenesis under physiological condition is still largely elusive. Methods: H9C2 cells were treated with different concentrations of QLQX (0.25, 0.5, and 1.0 µg/mL) from 6 to 48 hours. Oxidative metabolism and glycolysis were measured by oxygen consumption and extracellular acidification with XF96 analyzer (SeaHorse). Mitochondrial content and ultrastructure were assessed by Mitotracker staining, confocal microscopy, flow cytometry, and transmission electron microscopy. Mitochondrial biogenesis-related genes were measured by qRT-PCR and Western blot. Results: H9C2 cells treated with QLQX exhibited increased glycolysis at earlier time points (6, 12, and 24 hours), while QLQX could enhance oxidative metabolism and mitochondrial uncoupling in H9C2 cells with longer duration of treatment (48 hours). QLQX also increased mitochondrial content and mitochondrial biogenesis-related gene expression levels, including 16sRNA, SSBP1, TWINKLE, TOP1MT and PLOG, with an activation of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and its downstream effectors. Silencing PGC-1α could abolish the increased mitochondrial content in H9C2 cells treated with QLQX. Conclusion: Our study is the first to document enhanced metabolism in cardiomyocytes treated with QLQX, which is linked to increased mitochondrial content and mitochondrial biogenesis via activation of PGC-1α.


Livers ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 201-220
Author(s):  
Carolina Vieira Campos ◽  
Caio Jordão Teixeira ◽  
Tanyara Baliani Payolla ◽  
Amanda Rabello Crisma ◽  
Gilson Masahiro Murata ◽  
...  

In the present study we investigated the participation of hepatic peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in the metabolic programming of newborn rats exposed in utero to dexamethasone (DEX). On the 21st day of life, fasted offspring born to DEX-treated mothers displayed increased conversion of pyruvate into glucose with simultaneous upregulation of PEPCK (phosphoenolpyruvate carboxykinase) and G6Pase (glucose-6-phosphatase). Increased oxidative phosphorylation, higher ATP/ADP ratio and mitochondrial biogenesis and lower pyruvate levels were also found in the progeny of DEX-treated mothers. On the other hand, the 21-day-old progeny of DEX-treated mothers had increased hepatic triglycerides (TAG) and lower CPT-1 activity when subjected to short-term fasting. At the mechanistic level, rats exposed in utero to DEX exhibited increased hepatic PGC-1α protein content with lower miR-29a-c expression. Increased PGC-1α content was concurrent with increased association to HNF-4α and NRF1 and reduced PPARα expression. The data presented herein reveal that changes in the transcription machinery in neonatal liver of rats born to DEX-treated mothers leads to an inflexible metabolic response to fasting. Such programming is hallmarked by increased oxidative phosphorylation of pyruvate with impaired FFA oxidation and hepatic TAG accumulation.


2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


2021 ◽  
pp. 1-9
Author(s):  
Fan Ye ◽  
Anshi Wu

Silent information-regulated transcription factor 1 (SIRT1) is the most prominent and widely studied member of the sirtuins (a family of mammalian class III histone deacetylases). It is a nuclear protein, and the deacetylation of the peroxisome proliferator-activated receptor coactivator-1 has been extensively implicated in metabolic control and mitochondrial biogenesis and is the basis for studies into its involvement in caloric restriction and its effects on lifespan. The present study discusses the potentially protective mechanism of SIRT1 in the regulation of the mitochondrial biogenesis and autophagy involved in the modulation of Alzheimer’s disease, which may be correlated with the role of SIRT1 in affecting neuronal morphology, learning, and memory during development; regulating metabolism; counteracting stress responses; and maintaining genomic stability. Drugs that activate SIRT1 may offer a promising approach to treating Alzheimer’s disease


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 349
Author(s):  
Rodrigo Prieto-Carrasco ◽  
Fernando E. García-Arroyo ◽  
Omar Emiliano Aparicio-Trejo ◽  
Pedro Rojas-Morales ◽  
Juan Carlos León-Contreras ◽  
...  

The five-sixth nephrectomy (5/6Nx) model is widely used to study the mechanisms involved in chronic kidney disease (CKD) progression. Mitochondrial impairment is a critical mechanism that favors CKD progression. However, until now, there are no temporal studies of the change in mitochondrial biogenesis and dynamics that allow determining the role of these processes in mitochondrial impairment and renal damage progression in the 5/6Nx model. In this work, we determined the changes in mitochondrial biogenesis and dynamics markers in remnant renal mass from days 2 to 28 after 5/6Nx. Our results show a progressive reduction in mitochondrial biogenesis triggered by reducing two principal regulators of mitochondrial protein expression, the peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and the peroxisome proliferator-activated receptor alpha. Furthermore, the reduction in mitochondrial biogenesis proteins strongly correlates with the increase in renal damage markers. Additionally, we found a slow and gradual change in mitochondrial dynamics from fusion to fission, favoring mitochondrial fragmentation at later stages after 5/6Nx. Together, our results suggest that 5/6Nx induces the progressive reduction in mitochondrial mass over time via the decrease in mitochondrial biogenesis factors and a slow shift from mitochondrial fission to fusion; both mechanisms favor CKD progression in the remnant renal mass.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Levente Szalárdy ◽  
Dénes Zádori ◽  
Péter Klivényi ◽  
József Toldi ◽  
László Vécsei

Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson’s and Huntington’s disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.


2021 ◽  
Author(s):  
Cheoljun Choi ◽  
Yeonho Son ◽  
Jinyoung Kim ◽  
Yoon Keun Cho ◽  
Abhirup Saha ◽  
...  

Transmembrane 4 L six family member 5 (TM4SF5) functions as a sensor for lysosomal arginine levels and activates the mammalian target of rapamycin complex 1 (mTORC1). While the mTORC1 signaling pathway plays a key role in adipose tissue metabolism, the regulatory function of TM4SF5 in adipocytes remains unclear. This study aimed to establish a TM4SF5 knockout (KO) mouse model and investigated the effects of TM4SF5 KO on mTORC1 signaling-mediated autophagy and mitochondrial metabolism in adipose tissue. TM4SF5 expression was higher in inguinal white adipose tissue (iWAT) than in brown adipose tissue and significantly upregulated by a high-fat diet (HFD). TM4SF5 KO reduced mTORC1 activation and enhanced autophagy and lipolysis in adipocytes. RNA-seq analysis of TM4SF5 KO mouse iWAT showed that the expression of genes involved in peroxisome proliferator-activated receptor alpha signaling pathways and mitochondrial oxidative metabolism was upregulated. Consequently, TM4SF5 KO reduced adiposity and increased energy expenditure and mitochondrial oxidative metabolism. TM4SF5 KO prevented HFD-induced glucose intolerance and inflammation in adipose tissue. Collectively, our study demonstrated that TM4SF5 regulates autophagy and lipid catabolism in adipose tissue and suggested that TM4SF5 could be therapeutically targeted for the treatment of obesity-related metabolic diseases.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Jessica M Toli ◽  
Minzhen He ◽  
Carolyn Suzuki ◽  
Maha Abdellatif

Mitochondrial quality control is critical for the survival of cardiac myocytes during stress. The purpose of this study was to examine the effect of metabolic substrates and regulators of metabolism on mitochondrial bioenergetics, as an indicator of mitochondrial quality, and how these factors might influence the recovery of the cell’s bioenergetics after hypoxia/ischemia. By monitoring oxygen consumption rates (OCR), in real-time, in live neonatal rat myocytes and human cardiac myocyte-differentiated induced pluripotent stem cells, we found that both cell types can maintain basal OCR efficiently with any metabolic substrate; however, the neonatal cells require both glucose and fatty acid, while the human adult cells require fatty acid only, for mounting maximum reserve respiratory capacity (RRC). Our data also show that subjecting cardiac myocytes to hypoxia results in a reduction of the cells’ basal OCR and oxidative phosphorylation, and exhausts the RRC, which is accompanied by an increase in pyruvate dehydrogenase kinase (Pdk) 1 and 4. Except for normalization of Pdk1 levels, there was little or no recovery of these parameters after reoxygenation. We, thus, hypothesized, that inhibition of Pdks may help recovery of the cell’s bioenergetics. Indeed, our results show that by inhibiting Pdks with dichloroacetate (DCA) before or after hypoxia, the cells’ bioenergetics, including OCR, oxidative phosphorylation, and RRC in neonatal myocytes, and RRC in the human myocytes fully recover within 24 h. On the other hand, activating AMP-activated kinase (AMPK) resulted in delayed (96 h) improvement of the cells’ RRC that was accompanied by an increase in peroxisome proliferator-activated receptor gamma, coactivator 1α (3.5x), peroxisome proliferator-activated receptor-α (2x), and mitochondrial number (2x). These results led us to conclude that compromised mitochondrial quality can be rescued through mechanisms that regulate glucose or fatty acid oxidation by either inhibiting Pdks or activating AMPK, respectively, in rodent and human myocytes.


Sign in / Sign up

Export Citation Format

Share Document