scholarly journals Alterations in egg white-related genes expression in response to hormonal stimulation

Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 793-801
Author(s):  
Minkyeong Lee ◽  
Changwon Yang ◽  
Gwonhwa Song ◽  
Whasun Lim

The reproductive tract in avian females is sensitive to hormonal regulation. Exogenous estrogen induces immature oviduct development to improve egg production after molting. In this process, regressed female reproductive tract is regenerated in response to the secretion of estrogen. However, there is limited knowledge on the physiological mechanisms underlying the regulation of the avian female reproductive system. In our previous study, results from microarray analysis revealed that the expression of genes encoding egg white proteins is affected during molting. Herein, we artificially induced the molting period in chickens through a zinc-containing diet. Subsequently, changes in the expression of genes encoding egg white proteins were confirmed in the oviduct tissue. The levels of MUC5B, ORM1, RTBDN, and TENP mRNA were significantly high in the oviduct, and the genes were repressed in the regression phase, whereas these were expressed in the recrudescence phase, particularly in the luminal epithelium and glandular epithelium of the oviduct, during molting. Moreover, we observed that gene expression was induced in the magnum, the site for the secretion of egg white components. Next, differences in expression levels of the four genes in normal and cancerous ovaries were compared. Collectively, results suggest that the four selected genes are expressed in the female chicken reproductive tract in response to hormonal regulation, and egg white protein-encoding genes may serve as modulators of the reproductive system in hens.

2019 ◽  
Vol 116 (17) ◽  
pp. 8437-8444 ◽  
Author(s):  
Brian Hollis ◽  
Mareike Koppik ◽  
Kristina U. Wensing ◽  
Hanna Ruhmann ◽  
Eléonore Genzoni ◽  
...  

In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. InDrosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.


2011 ◽  
Vol 14 (1) ◽  
pp. 149-158 ◽  
Author(s):  
R. Rękawiecki ◽  
M. Kowalik ◽  
J. Kotwica

Nuclear progesterone receptor isoforms and their functions in the female reproductive tract Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4209-4217 ◽  
Author(s):  
Brenda Anguiano ◽  
Nuri Aranda ◽  
Guadalupe Delgado ◽  
Carmen Aceves

We characterized the enzymes that catalyze the deiodination of T4 to T3 in the male reproductive tract. Testis, epididymis (EPI), seminal vesicles, prostate, bulbourethral glands, spermatozoa, and semen were taken from sexually mature rats (300 g). Iodothyronine 5′-deiodinase (5′-D) activity was quantified by the radiolabeled-iodide-release method. 5′-D activity was 10-fold higher in EPI and semen than in the rest of the tissues. In EPI, semen, and prostate, the enzymatic activity was completely inhibited by 1 mm 6-n-propyl-2-thiouracil, whereas in the other tissues the inhibition was partial (50%). The high susceptibility to 6-n-propyl-2-thiouracil inhibition, a ping-pong kinetic pattern, and low cofactor (Michaelis Menten constant for dithiothreitol = 0.7 mm) and high substrate (Michaelis Menten constant for reverse T3 = 0.4 μm) requirements indicate that EPI 5′-D corresponds to type 1 deiodinase (D1). Real-time RT-PCR amplification of D1 mRNA in this tissue confirms this conclusion. The highest EPI D1 expression occurred at the onset of puberty and sexual maturity, and in the adult, this activity was more abundant in corpus and caput than in the caudal region. EPI D1 expression was elevated under conditions of hyperthyroidism and with addition of 17β-estradiol. Our data also showed a direct association between D1 and a functional epididymis marker, the neutral α-glucosidase enzyme, suggesting that local generation of T3 could be associated with the development and function of EPI and/or spermatozoa maturation. Further studies are necessary to analyze the possible physiological relevance of 5′-D in the male reproductive system.


2021 ◽  
Author(s):  
Oyovwi Mega Obukohwo ◽  
Nwangwa Eze Kingsley ◽  
Rotu Arientare Rume ◽  
Emojevwe Victor

The human reproductive system is made up of the primary and secondary organs, which helps to enhances reproduction. The male reproductive system is designed to produce male gametes and convey them to the female reproductive tract through the use of supportive fluids and testosterone synthesis. The paired testis (site of testosterone and sperm generation), scrotum (compartment for testis localisation), epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral gland, ejaculatory duct, urethra, and penis are the parts of the male reproductive system. The auxiliary organs aid in the maturation and transportation of sperm. Semen is made up of sperm and the secretions of the seminal vesicles, prostate, and bulbourethral glands (the ejaculate). Ejaculate is delivered to the female reproduc¬tive tract by the penis and urethra. The anatomy, embryology and functions of the male reproductive system are discussed in this chapter.


GigaScience ◽  
2021 ◽  
Vol 10 (9) ◽  
Author(s):  
Yuan Su ◽  
Shilin Tian ◽  
Diyan Li ◽  
Wei Zhu ◽  
Tao Wang ◽  
...  

Abstract Background The microbiota of the female reproductive tract is increasingly recognized as playing fundamental roles in animal reproduction. To explore the relative contribution of reproductive tract microbiomes to egg production in chickens, we investigated the microbiota in multiple reproductive and digestive tract sites from 128 female layer (egg-producing) chickens in comparable environments. Results We identified substantial differences between the diversity, composition, and predicted function of site-associated microbiota. Differences in reproductive tract microbiota were more strongly associated with egg production than those in the digestive tract. We identified 4 reproductive tract microbial species, Bacteroides fragilis, Bacteroides salanitronis, Bacteroides barnesiae, and Clostridium leptum, that were related to immune function and potentially contribute to enhanced egg production. Conclusions These findings provide insights into the diverse microbiota characteristics of reproductive and digestive tracts and may help in designing strategies for controlling and manipulating chicken reproductive tract microbiota to improve egg production.


2020 ◽  
Vol 21 (15) ◽  
pp. 5477
Author(s):  
Manuel Alvarez-Rodriguez ◽  
Cristina A. Martinez ◽  
Dominic Wright ◽  
Heriberto Rodriguez-Martinez

Semen—through its specific sperm and seminal plasma (SP) constituents—induces changes of gene expression in the internal genital tract of pigs, particularly in the functional sperm reservoir at the utero-tubal junction (UTJ). Although seminal effects are similarly elicited by artificial insemination (AI), major changes in gene expression are registered after natural mating, a fact suggesting the act of copulation induces per se changes in genes that AI does not affect. The present study explored which pathways were solely influenced by copulation, affecting the differential expression of genes (DEGs) of the pre/peri-ovulatory genital tract (cervix, distal uterus, proximal uterus and UTJ) of estrus sows, 24 h after various procedures were performed to compare natural mating with AI of semen (control 1), sperm-free SP harvested from the sperm-peak fraction (control 2), sperm-free SP harvested from the whole ejaculate (control 3) or saline-extender BTS (control 4), using a microarray chip (GeneChip® porcine gene 1.0 st array). Genes related to neuroendocrine responses (ADRA1, ADRA2, GABRB2, CACNB2), smooth muscle contractility (WNT7A), angiogenesis and vascular remodeling (poFUT1, NTN4) were, among others, overrepresented with distal and proximal uterine segments exhibiting the highest number of DEGs. The findings provide novel evidence that relevant transcriptomic changes in the porcine female reproductive tract occur in direct response to the specific act of copulation, being semen-independent.


1988 ◽  
Vol 66 (12) ◽  
pp. 2791-2796
Author(s):  
Barbara M. MacKinnon ◽  
D. L. Lee

Changes in neutral lipid content of developing female gametes in Heligmosomoides polygyrus at 8, 12, 20, 40, 80, and 140 days postinfection (p.i.) were investigated and correlated with egg production by the worms over the same period. Egg production increased to day 20 p.i. when the average egg output for one female reached approximately 700 eggs/day. A decline in egg production occurred from 80 days p.i. until the end of the experiment (140 days p.i.). Neutral lipid content was low in oogonia from worms of all ages. Developing oocytes contained the highest levels of neutral lipid. There was a significant loss of lipid just before fertilization of the oocytes. An increase in lipid occurred in all developmental stages of gametes from day 8 to day 40 p.i., and a significant decline occurred thereafter to day 140 p.i. Although egg production and lipid content of the female reproductive tract showed similar trends, there was not a precise correlation. It is felt that nuclear and cytoplasmic processes other than lipid anabolism or catabolism within the developing gametes play a more important role in influencing egg output.


2018 ◽  
Vol 4 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Zafar Ahmed Bhuiyan ◽  
Md Giasuddin ◽  
Zahed Uddin Mahmood Khan

Infectious bronchitis virus (IBV) is a highly contagious viral disease of the chicken. It is possibly the most economically important viral respiratory disease of chicken after Avian Influenza and Newcastle disease. The virus also affects the female reproductive tract, causing poor quality of egg and loss of egg production. The study was conducted in four types of chicken (broiler, layer, sonali and Deshi) from 7 sub-districts under 4 districts of Bangladesh. Total 833 blood samples from 103 farms were collected and subjected to indirect ELISA test by commercially available IBV ELISA kits to detect specific antibodies against IBV. In overall 59.30% seroprevalence observed, 23.82% was found in broiler, 97.87% in layer, 71.83% in sonali and 83.46% in Deshi types of chickens. Broiler samples showed lowest seroprevalence with high CV (CV%=171.38), among them 76.18% were not seroconvert because of high maternal antibody or poor vaccine response. Layers showed highest seroprevalence with CV% 58.86 that is 18.00% chickens shows titer above 14000 which indicated field infection. Deshi chickens were not commercially vaccinated even though they had high seroprevalence rates 83.46% with mean titer 5333 and CV% 79.88, indicating that IBV is circulating as endemic diseases in the selected areas. Sonali chickens now reared as commercial chicken, have lower seroprevalence rates with mean titer 3160, CV% 128.39 indicating that these birds were not properly vaccinated as they required. To prevent the flocks from IBV, live and attenuated vaccination is required according to circulating strains.Asian J. Med. Biol. Res. March 2018, 4(1): 132-136


Parasitology ◽  
1983 ◽  
Vol 86 (4) ◽  
pp. 59-83 ◽  
Author(s):  
J. Riley

SUMMARYPentastomids are arthropod parasites which attain maturity in the respiratory tracts of vertebrates. All pentastomids exhibit an obvious sexual dimorphism in that fully mature females are invariably much bigger than males. Unusually though, copulation, which happens only once in the lifetime of females, occurs when both sexes are approximately the same size and the uterus of the female is undeveloped. This is because sperm is stored in spermathecae which, being positioned at the junction of the oviduct and uterus, become more remote from the vagina as the uterus elongates during development. The provision of spermathecae for sperm storage allows oocytes, shed continuously from the ovary, to be fertilized from time to time. What renders this process quite remarkable, and possibly unique, is the extreme length of the patent period. In one species this can extend up to an estimated 10 years and is associated with an egg production of about 106eggs/female/year. Spermathecal structure provides some clues as to how prolonged sperm storage and the continuous fertilization of oocytes is accomplished. The upper region of the access duct is a narrow, chitinized tube which tapers to as little as 3 μm diameter at the point of entry into the spermatheca. The chitinous (?) lining of the spermatheca is relatively impermeable and apparently functions to totally isolate sperm from external influences: stored sperm are arranged in bundles and whorls and remain totally quiescent and inactive during the storage period. The entire spermatheca is invested by muscle fibres, the contraction of which will express small numbers of sperms through the narrow access duct. These are then reactivated by secretions from the female reproductive tract: the extreme narrowness of the spermathecal duct provides the fine adjustment of the system. The narrowness of the duct also creates problems during the process of insemination, since sperm discharged directly into the female reproductive tract would be unlikely to find the spermatheca through such a structure. Accordingly, the male cirrus is much modified to directly penetrate the spermathecal duct during copulation. Sperms, stored in the male seminal vesicle, are apparently activated prior to sperm transfer, and swim along the cirrus to be guided directly into the spermathecal lumen. Some unusual variations on the normal pentastomid life-cycle are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziano Lottini ◽  
Jessica Iorio ◽  
Elena Lastraioli ◽  
Laura Carraresi ◽  
Claudia Duranti ◽  
...  

AbstractThe receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.


Sign in / Sign up

Export Citation Format

Share Document