scholarly journals Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis

Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Angela Jeanes ◽  
Dagmar Wilhelm ◽  
Megan J Wilson ◽  
Josephine Bowles ◽  
Peter J McClive ◽  
...  

Despite the importance of peritubular myoid (PM) cells in the histogenesis of the fetal testis, understanding the origin and function of these cells has been hampered by the lack of suitable markers. The current study was aimed at identifying molecular markers for PM cells during the early stages of testis development in the mouse embryo. Expression of candidate marker genes was tested by section in situ hybridisation, in some instances followed by immunofluorescent detection of protein products. Collagen type-I, inhibinβA, caldesmon 1 and tropomyosin 1 were found to be expressed by early-stage PM cells. These markers were also expressed in subsets of interstitial cells, most likely reflecting their common embryological provenance from migrating mesonephric cells. Although not strictly specific for PM cells, these markers are likely to be useful in studying the biology of early PM cells in the fetal testis.

Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 1007-1016 ◽  
Author(s):  
S. Hirano ◽  
K. Ui ◽  
T. Miyake ◽  
T. Uemura ◽  
M. Takeichi

Using the Drosophila cell line MLDmBG-1, a monoclonal antibody aBG-1 that can inhibit not only cell clumping but also cell spreading was generated. This antibody immunoprecipitates a complex of molecules consisting of a major 120 × 10(3) Mr and other components. To characterize the 120 × 10(3) Mr component, we purified it, generated antibodies to it, and cloned its cDNA. Sequencing of this cDNA suggests that the 120 × 10(3) Mr molecule is identical to PS beta, a beta chain of Drosophila integrins. The other components immunoprecipitated included two alpha chains of Drosophila integrins, PS1 alpha and PS2 alpha, as revealed using specific antibodies to these molecules. These suggest that aBG-1 recognizes the PS beta associated with PS1 alpha or PS2 alpha. However, immunostaining of embryos and larvae with aBG-1 showed that the staining pattern is similar to that for PS2 alpha but not for PS beta, suggesting that the antibody preferentially recognizes the PS beta associated with particular alpha chains in situ. We then attempted to characterize the ligands for these integrin complexes, using culture dishes coated with various vertebrate matrix proteins. These cells spread very well on dishes coated with vitronectin and, to a lesser extent, on those with fibronectin. This spreading was partially inhibited by aBG-1, but not by other control antibodies or RGD peptides. The cell attachment to these substrata was not affected by the antibody. The cells also can attach to dishes coated with laminin but without spreading, and this attachment was not inhibited by aBG-1. Furthermore, they do not attach to dishes coated with collagen type I, type IV, and fibrinogen. These results indicate that Drosophila PS integrins can recognize vertebrate vitronectin, and also fibronectin with a weaker affinity, at sites other than RGD sequences, and thus can function in cell-substratum adhesion.


Development ◽  
1997 ◽  
Vol 124 (18) ◽  
pp. 3575-3586 ◽  
Author(s):  
D. Meyer ◽  
T. Yamaai ◽  
A. Garratt ◽  
E. Riethmacher-Sonnenberg ◽  
D. Kane ◽  
...  

Neuregulin (also known as NDF, heregulin, ARIA, GGF or SMDF), induces cell growth and differentiation. Biological effects of neuregulin are mediated by members of the erbB family of tyrosine kinase receptors. Three major neuregulin isoforms are produced from the gene, which differ substantially in sequence and in overall structure. Here we use in situ hybridization with isoform-specific probes to illustrate the spatially distinct patterns of expression of the isoforms during mouse development. Ablation of the neuregulin gene in the mouse has demonstrated multiple and independent functions of this factor in development of both the nervous system and the heart. We show here that targeted mutations that affect different isoforms result in distinct phenotypes, demonstrating that isoforms can take over specific functions in vivo. Type I neuregulin is required for generation of neural crest-derived neurons in cranial ganglia and for trabeculation of the heart ventricle, whereas type III neuregulin plays an important role in the early development of Schwann cells. The complexity of neuregulin functions in development is therefore due to independent roles played by distinct isoforms.


2014 ◽  
Vol 922 ◽  
pp. 260-263 ◽  
Author(s):  
Masatoshi Ii ◽  
Masaki Tahara ◽  
Hideki Hosoda ◽  
Shuichi Miyazaki ◽  
Tomonari Inamura

The preferred morphology of self-accommodation (SA) microstructure in a Ti-Nb-Al shape memory alloy was investigated by the evaluation of the frequency distribution of the habit plane variant (HPV) clusters using in-situ optical microscopy. The observed HPV clusters were classified into two different types; one is the cluster connected by the {111}o type I twin (Type I) and the other is connected by the <211>o type II twin (Type II). The total fractions of the Type I and Type II clusters were 52% and 48%, respectively. The incompatibility at junction planes (JPs) of the two clusters was almost the same among these clusters. However, most of the larger martensite plates (> 50μm) formed Type I cluster at the later stage of the reverse martensitic transformation, i.e., at the early stage of the forward transformation upon cooling. The ratio of the fraction of Type I and II is almost 2:1 at the early stage of the forward transformation.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2411 ◽  
Author(s):  
Zyanya P. Espinosa-Riquer ◽  
Deisy Segura-Villalobos ◽  
Itzel G. Ramírez-Moreno ◽  
Marian Jesabel Pérez Rodríguez ◽  
Mónica Lamas ◽  
...  

Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.


1993 ◽  
Vol 264 (4) ◽  
pp. G589-G595 ◽  
Author(s):  
D. A. Brenner ◽  
J. Westwick ◽  
M. Breindl

Cirrhosis is characterized by an increased deposition of extracellular matrix proteins, including type I collagen. Type I collagen is a product of two genes, alpha 1(I) and alpha 2(I), which are generally coordinately regulated. Since expression of type I collagen genes is increased during cirrhosis, understanding the structure and function of the regulatory components of the type I collagen genes should provide insight into the molecular pathogenesis of cirrhosis. This review will analyze the collagen alpha 1(I) gene with respect to chromatin structure, DNA methylation, regulation by agonists, and DNA-protein interactions.


1993 ◽  
Vol 41 (5) ◽  
pp. 679-684 ◽  
Author(s):  
N Nagamoto ◽  
K Iyama ◽  
M Kitaoka ◽  
Y Ninomiya ◽  
H Yoshioka ◽  
...  

We investigated the spatiotemporal localization of collagen Type I, II, and X mRNAs in the subcutaneously grafted chick periosteum by in situ hybridization. Five days after transplantation, we noted three types of histological findings in the grated tissue. (a) Developing trabecular bone exhibited proliferation of spindle-shaped fibroblastic cells and polygonal osteoblasts with moderate signals for collagen Type I mRNA. (b) Developing cartilage contained ovoid chondrocytes with a moderate level of both collagen Type I and II mRNAs. Differentiating chondrocytes with increased collagen Type X mRNA developed during the course of endochondral ossification. (c) An atypical mass of cartilage weakly stained with alcian blue was composed of a large number of non-hypertrophic chondrocytes exhibiting high signals for collagen Type X mRNA. At Day 9, we observed the typical histological features of both membranous and endochondral ossification. However, sparsely distributed chondrocytes with high signals for collagen Type X mRNA were also demonstrated in osteoid and/or woven bone. The phenotype of chondrocytes showing rapid expression of collagen Type X gene derived from grafted periosteum seems to participate in the important role of endochondral bone formation in the early stage of fracture repair.


2019 ◽  
Vol 10 ◽  
pp. 204173141984877 ◽  
Author(s):  
Ibtesam Rajpar ◽  
Jennifer G Barrett

Adult tissue stem cells have shown promise for the treatment of debilitating tendon injuries. However, few comparisons of stem cells from different tissue sources have been made to determine the optimum stem cell source for treating tendon. Moreover, it is likely that the application of tenogenic growth factors will improve tendon stem cell treatments further, and a comprehensive comparison of a number of growth factors is needed. Thus far, different types of stem cells cannot be evaluated in a high-throughput manner. To this end, we have developed an approach to culture mesenchymal stem cells isolated from bone marrow in collagen type I hydrogels with tenogenic growth factors using economical, commercially available supplies. To optimize growth factors for this assay, FGF-2, TGF-β1, IGF-1, and/or BMP-12 were tested singly and in novel combinations of (1) BMP-12 and IGF-1, (2) TGF-β1 and IGF-1, and/or (3) BMP-12 and FGF-2 over 10 days. Our data suggest that BMP-12 supplementation alone results in the strongest expression of tendon marker genes, controlled contractility of constructs, a higher degree of cell alignment, and tendon-like tissue morphology. This easy-to-use benchtop assay can be used to screen novel sources of stem cells and cell lines for tissue engineering and tendon healing applications.


2005 ◽  
Vol 475-479 ◽  
pp. 2363-2366
Author(s):  
Jin Rui Xu ◽  
Hong Song Fan ◽  
Yan Fei Tan ◽  
Xing Dong Zhang

The osteoinductivity of calcium phosphate ceramics has been studied extensively, but the mechanism is still unclear and few reports about the molecular mechanism in the osteoinductive process. In this study the osteoblast related gene expressions induced by biomaterials were investigated by isolating the RNA from the tissue grown in porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramics implanted in rat femur muscle on day 7, 15, 30, 60, 90,120, and analyzed by RT-PCR technique. RNA extracted from muscle without implant was used as control at the same time. The results showed that osteopontin and osteocalcin genes, the important osteoblastic markers, expressed in early stage, on day 7 after implantation, and were detected at any period. Collagen type I gene expressed on day 60, 90 and 120. It revealed that osteoblast differentiation occurred very early before collagen type I expression after implanting HA/TCP ceramics in vivo.


1999 ◽  
Vol 181 (12) ◽  
pp. 3632-3643 ◽  
Author(s):  
Mónica Serrano ◽  
Rita Zilhão ◽  
Ezio Ricca ◽  
Amanda J. Ozin ◽  
Charles P. Moran ◽  
...  

ABSTRACT Bacterial endospores are encased in a complex protein coat, which confers protection against noxious chemicals and influences the germination response. In Bacillus subtilis, over 20 polypeptides are organized into an amorphous undercoat, a lamellar lightly staining inner structure, and an electron-dense outer coat. Here we report on the identification of a polypeptide of about 30 kDa required for proper coat assembly, which was extracted from spores of agerE mutant. The N-terminal sequence of this polypeptide matched the deduced product of the tasA gene, after removal of a putative 27-residue signal peptide, and TasA was immunologically detected in material extracted from purified spores. Remarkably, deletion of tasA results in the production of asymmetric spores that accumulate misassembled material in one pole and have a greatly expanded undercoat and an altered outer coat structure. Moreover, we found that tasA and gerE mutations act synergistically to decrease the efficiency of spore germination. We show that tasA is the most distal member of a three-gene operon, which also encodes the type I signal peptidase SipW. Expression of the tasA operon is enhanced 2 h after the onset of sporulation, under the control of ςH. WhentasA transcription is uncoupled from sipWexpression, a presumptive TasA precursor accumulates, suggesting that its maturation depends on SipW. Mature TasA is found in supernatants of sporulating cultures and intracellularly from 2 h of sporulation onward. We suggest that, at an early stage of sporulation, TasA is secreted to the septal compartment. Later, after engulfment of the prespore by the mother cell, TasA acts from the septal-proximal pole of the spore membranes to nucleate the organization of the undercoat region. TasA is the first example of a polypeptide involved in coat assembly whose production is not mother cell specific but rather precedes its formation. Our results implicate secretion as a mechanism to target individual proteins to specific cellular locations during the assembly of the bacterial endospore coat.


Soft Matter ◽  
2012 ◽  
Vol 8 (40) ◽  
pp. 10200 ◽  
Author(s):  
Dimitar R. Stamov ◽  
Tilo Pompe

Sign in / Sign up

Export Citation Format

Share Document