scholarly journals Tissue-Specific Transcriptomes Reveal Gene Expression Trajectories in Two Maturing Skin Epithelial Layers in Zebrafish Embryos

2019 ◽  
Vol 9 (10) ◽  
pp. 3439-3452 ◽  
Author(s):  
Shawn J. Cokus ◽  
Maricruz De La Torre ◽  
Eric F. Medina ◽  
Jeffrey P. Rasmussen ◽  
Joselyn Ramirez-Gutierrez ◽  
...  

Epithelial cells are the building blocks of many organs, including skin. The vertebrate skin initially consists of two epithelial layers, the outer periderm and inner basal cell layers, which have distinct properties, functions, and fates. The embryonic periderm ultimately disappears during development, whereas basal cells proliferate to form the mature, stratified epidermis. Although much is known about mechanisms of homeostasis in mature skin, relatively little is known about the two cell types in pre-stratification skin. To define the similarities and distinctions between periderm and basal skin epithelial cells, we purified them from zebrafish at early development stages and deeply profiled their gene expression. These analyses identified groups of genes whose tissue enrichment changed at each stage, defining gene flow dynamics of maturing vertebrate epithelia. At each of 52 and 72 hr post-fertilization (hpf), more than 60% of genes enriched in skin cells were similarly expressed in both layers, indicating that they were common epithelial genes, but many others were enriched in one layer or the other. Both expected and novel genes were enriched in periderm and basal cell layers. Genes encoding extracellular matrix, junctional, cytoskeletal, and signaling proteins were prominent among those distinguishing the two epithelial cell types. In situ hybridization and BAC transgenes confirmed our expression data and provided new tools to study zebrafish skin. Collectively, these data provide a resource for studying common and distinguishing features of maturing epithelia.

1993 ◽  
Vol 122 (5) ◽  
pp. 1119-1130 ◽  
Author(s):  
LE French ◽  
A Chonn ◽  
D Ducrest ◽  
B Baumann ◽  
D Belin ◽  
...  

Clusterin is a broadly distributed glycoprotein constitutively expressed by various tissues and cell types, that has been shown to be involved in cell-cell adhesion and expressed during cellular differentiation in vitro. To assess the suggested participation of clusterin in these processes in vivo, we have cloned the cDNA encoding murine clusterin and studied the cellular distribution of clusterin mRNA during murine embryogenesis. Sequence analysis of the cDNA encoding murine clusterin revealed 92 and 75% sequence identity with the rat and human cDNAs, respectively, and conservation of the predicted structural features which include alpha-helical regions and heparin-binding domains. From 12.5 d of development onwards, the clusterin gene is widely expressed in developing epithelia, and selectively localized within the differentiating cell layers of tissues such as the developing skin, tooth, and duodenum where proliferating and differentiating compartments are readily distinguished. In addition, transient and localized clusterin gene expression was detected in certain morphogenetically active epithelia. In the lung, abundant gene transcripts were detected in cuboidal epithelial cells of the terminal lung buds during branching morphogenesis, and in the kidney, clusterin gene expression in the epithelial cells of comma and S-shaped bodies coincided with the process of polarization. Our results demonstrate the in vivo expression of the clusterin gene by differentiating epithelial cells during murine embryogenesis, and provide novel evidence suggesting that clusterin may be involved in the differentiation and morphogenesis of certain epithelia.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background In post-partum dairy cows, the energy needs to satisfy high milk production induces a status of more or less pronounced Negative Energy Balance (NEB). NEB associated with fat mobilization impairs reproductive function. In a companion paper, we described constitutive gene expression in the three main endometrial cell types (stromal, glandular and luminal epithelial cells) isolated by laser capture micro-dissection (LCM) showing the specificities of their transcriptomic profiles. This study investigates the specific impact of NEB on gene expression in these cells around 80 days after parturition at day 15 of the oestrus cycle and describes their specific response to NEB. Results Following the description of their constitutive expression, the transcriptome profiles obtained by RNA sequencing of the three cells types revealed that differences related to the severity of NEB altered mainly specific patterns of expression related to individual cell types. Number of differentially expressed genes between severe NEB (SNEB) and mild NEB (MNEB) cows was higher in ST than in LE and GE, respectively. SNEB was associated with differential expression of genes coding for proteins involved in metabolic processes and embryo-maternal interactions in ST. Under-expression of genes encoding proteins with functions related to cell structure was found in GE whereas genes encoding proteins participating in pro-inflammatory pathways were over-expressed. Genes associated to adaptive immunity were under-expressed in LE. Conclusion The severity of NEB after calving is associated with changes in gene expression around 80 days after parturition corresponding to the time of breeding. Specific alterations in GEs are associated with activation of pro-inflammatory mechanisms. Concomitantly, changes in the expression of genes encoding proteins involved in cell interactions and maternal recognition of pregnancy takes place in ST. The combination of these effects possibly altering the uterine environment and embryo maternal interactions may negatively influence the establishment of pregnancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 453-463 ◽  
Author(s):  
K.P. Steel ◽  
C. Barkway

The stria vascularis of the mammalian cochlea is composed primarily of three types of cells. Marginal cells line the lumen of the cochlear duct and are of epithelial origin. Basal cells also form a continuous layer and they may be mesodermal or derived from the neural crest. Intermediate cells are melanocyte-like cells, presumably derived from the neural crest, and are scattered between the marginal and basal cell layers. The marginal cells form extensive interdigitations with the basal and intermediate cells in the normal adult stria. The stria also contains a rich supply of blood vessels. We investigated the role of melanocytes in the stria vascularis by studying its development in a mouse mutant, viable dominant spotting, which is known to have a primary neural crest defect leading to an absence of recognisable melanocytes in the skin. Melanocytes were not found in the stria of most of the mutants examined, and from about 6 days of age onwards a reduced amount of interdigitation amongst the cells of the stria was observed. These ultrastructural anomalies were associated with strial dysfunction. In the normal adult mammal, the stria produces an endocochlear potential (EP), a resting dc potential in the endolymph in the cochlear duct, which in mice is normally about +100 mV. In our control mice, EP rose to adult levels between 6 and 16 days after birth. In most of the mutants we studied, EP was close to zero at all ages from 6 to 20 days. Melanocyte-like cells appear to be vital for normal stria vascularis development and function. They may be necessary to facilitate the normal process of interdigitation between marginal and basal cell processes at a particular stage during development, and the lack of adequate interdigitation in the mutants may be the cause of their strial dysfunction. Alternatively, melanocytes may have some direct, essential role in the production of an EP by the stria. Melanocytes may be important both for normal strial development and for the production of the EP. We believe this is the clearest demonstration yet of a role for migratory melanocytes other than their role in pigmentation.


2020 ◽  
Author(s):  
Róbert Pálovics ◽  
Andreas Keller ◽  
Nicholas Schaum ◽  
Weilun Tan ◽  
Tobias Fehlmann ◽  
...  

Slowing or reversing biological ageing would have major implications for mitigating disease risk and maintaining vitality. While an increasing number of interventions show promise for rejuvenation, the effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. We performed single-cell RNA-sequencing on 13 organs to reveal cell type specific responses to young or aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, hematopoietic stem cells, hepatocytes, and endothelial cells from multiple tissues appear especially responsive. On the pathway level, young blood invokes novel gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. Intriguingly, we observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it. Altogether, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


1986 ◽  
Vol 95 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Kensuke Watanabe

Capillaries entering and leaving the stria vascularis were surrounded by layers of basal cells and fibrocytes. The entering capillaries were surrounded by one or two thin basal cells, while the leaving capillaries were surrounded by four or five thicker and interdigitated basal cell layers. Moreover, the layers surrounding the leaving capillaries persisted further into the spiral ligament. Two kinds of filaments were observed in the basal cells, one thin and the other thick. Capillaries were observed to leak horseradish peroxidase before they entered and after they left the stria vascularis. Although the reaction product of horseradish peroxidase was observed in all perivascular spaces of leaving capillaries, very little or no reaction product was observed around some entering capillaries. It is speculated that the layers of basal cells and fibrocytes around entering and leaving capillaries control the vascular flow out of the stria vascularis, although the layers around leaving capillaries may be more contractile than those around entering capillaries.


Development ◽  
1986 ◽  
Vol 96 (1) ◽  
pp. 229-243
Author(s):  
E. Jane Ormerod ◽  
Philip S. Rudland

Rat mammary ducts, free of buds, can alone regenerate complete mammary trees when transplanted into the interscapular fat pads of syngeneic host rats. All the main mammary cell types are identified within such outgrowths. Epithelial cells, which show the presence of milk fat globule membrane antigens and microvilli on their luminal surfaces, line the ducts. Basal cells surrounding the ducts show characteristic features of myoepithelial cells: immunoreactive actin and keratin within the cytoplasm, myofilaments, pinocytotic vesicles and hemidesmosomal attachments to the basement membrane. Cells within the end buds and lateral buds, however, show few if any cytoplasmic myofilaments and are relatively undifferentiated in appearance. Intermediate morphologies between these cells and myoepithelial cells are seen nearer the ducts. In this respect they exactly resemble the cap cells found in terminal end buds (TEBs) of normal mammary glands. Occasional epithelial cells within alveolar buds show the presence of immunoreactive casein, which is a product of secretory alveolar cells in the normal rat mammary gland. Dissected terminal end buds can regenerate similar ductal outgrowths. Thus, ductal tissue alone can generate all the major mammary cell types seen in the normal gland, including the cap cells.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ko-Ting Lu ◽  
Eric T Weatherford ◽  
Pimonrat Ketsawatsomkron ◽  
Justin L Grobe ◽  
Curt D Sigmund

Expression of the renin gene is required to maintain normal morphological and physiological identity of renal juxtaglomerular (JG) cells, yet the mechanisms regulating renin gene transcription remain elusive. We re-examined data from Brunskill et. al (JASN 22:2213, 2011), investigating genome-wide gene expression in JG and other renal cell types. Based on our previous data implicating nuclear receptors (RAR, RXR, VDR, PPARG, Nr2f2 and Nr2f6) in the regulation of mouse and human renin gene expression, we focused our analysis on the expression of genes encoding the 48 nuclear hormone receptors and their co-regulation with renin. Several nuclear receptors have an expression pattern emulating that of renin, that is, they were similarly enriched in JG cells but not in other cell types. These include Esr1, Nr1h4, Ppara, VDR, Nr1i2, Ppard, Hnf4g, Nr1h3, Thrb, Hnf4a, Esrrg, Nr4a3, Nr3c2, and Ar. We tested the hypothesis that a nuclear receptor that is co-regulated with renin may participate in renin gene regulation. To accomplish this, endogenous renin expression was evaluated in renin-expressing As4.1 cells after siRNA-mediated knock down of selected nuclear receptors. Each experiment included a negative control siRNA duplex (NC) that does not target any known genes. By way of example, siRNA-mediated inhibition of estrogen receptor alpha (Esr1) by 70-80% resulted in a 2-fold decrease in renin mRNA (fold change ± SEM: siEsr1: 0.4±0.2, p<0.001 vs NC). Similar results were obtained with a different siRNA targeting Esr1. Interestingly, loss of Esr1 also caused up-regulation of vitamin D receptor (VDR, 2.8±0.7 fold, p<0.001 vs NC) and Nr2f6 (2.0±0.2 fold, p<0.05 vs NC), both of which are known to be negative regulators of renin. Similarly, both renin (0.1±0.02, p<0.001 vs untreated) and Esr1 (0.3±0.1, p<0.05 vs untreated) mRNA were reduced in the kidney from mice treated with deoxycorticosterone acetate (50mg) and receiving 0.15 M NaCl in drinking water for 21 days (DOCA-salt). These data suggest Esr1 may regulate renin expression. Studies are in progress to assess if Esr1 stimulates renin expression on its own or acts by affecting the level of other nuclear receptors; and to determine if other co-regulated nuclear receptors also regulate expression of the renin gene.


1988 ◽  
Vol 106 (4) ◽  
pp. 1249-1261 ◽  
Author(s):  
R E Leube ◽  
B L Bader ◽  
F X Bosch ◽  
R Zimbelmann ◽  
T Achtstaetter ◽  
...  

A number of human cytokeratins are expressed during the development of stratified epithelia from one-layered polar epithelia and continue to be expressed in several adult epithelial tissues. For studies of the regulation of the synthesis of stratification-related cytokeratins in internal tissues, we have prepared cDNA and genomic clones encoding cytokeratin 4, as a representative of the basic (type II) cytokeratin subfamily and cytokeratin 15, as representative of the acidic (type I) subfamily, and determined their nucleotide sequences. The specific expression of mRNAs encoding these two polypeptides in certain stratified tissues and cultured cell lines is demonstrated by Northern blot hybridization. Hybridization in situ with antisense riboprobes and/or synthetic oligonucleotides shows the presence of cytokeratin 15 mRNA in all layers of esophagus, whereas cytokeratin 4 mRNA tends to be suprabasally enriched, although to degrees varying in different regions. We conclude that the expression of the genes encoding these stratification-related cytokeratins starts already in the basal cell layer and does not depend on vertical differentiation and detachment from the basal lamina. Our results also show that simple epithelial and stratification-related cytokeratins can be coexpressed in basal cell layers of certain stratified epithelia such as esophagus. Implications of these findings for epithelial differentiation and the formation of squamous cell carcinomas are discussed.


2005 ◽  
Vol 86 (8) ◽  
pp. 2239-2248 ◽  
Author(s):  
R. J. O. Dowling ◽  
D. Bienzle

Infection of cats with Feline immunodeficiency virus (FIV) is an important model for understanding comparative lentivirus biology. In vivo, FIV infects lymphocytes and monocyte/macrophages, but in vitro infection is commonly investigated in epithelial Crandell–Reese Feline Kidney (CRFK) cells. In this study, the transcriptional responses of CRFK cells and primary lymphocytes to infection with FIV 34TF, a cloned subtype A virus, and FIV USgaB01, a biological subtype B isolate, were determined. Reverse-transcribed mRNA from both cell types was hybridized to microarrays containing 1700 human expressed sequence tags in duplicate and data were analysed with Significance Analysis of Microarrays (sam) software. Results from six experiments assessing homeostatic cross-species hybridization excluded 3·48 % inconsistently detected transcripts. Analysis of data from five time points over 48 h after infection identified 132 and 24 differentially expressed genes in epithelial cells and lymphocytes, respectively. Genes involved in protein synthesis, the cell cycle, structure and metabolism were affected. The magnitude of gene-expression changes ranged from 0·62 to 1·62 and early gene induction was followed by downregulation after 4 h. Transcriptional changes in CRFK cells were distinct from those in lymphocytes, except for heat-shock cognate protein 71, which was induced at multiple time points in both cell types. These findings indicate that FIV infection induces transcriptional changes of a modest magnitude in a wide range of genes, which is probably reflective of the relatively non-cytopathic nature of virus infection.


Sign in / Sign up

Export Citation Format

Share Document