scholarly journals Modeling the Processes of Vibration Compaction of Casting Molds Taking into Account the Effect of Asymmetry of Friction Forces

2021 ◽  
Vol 143 (1) ◽  
pp. 43-49
Author(s):  
O. V. Nogovitsyn ◽  
◽  
P. V. Rusakov ◽  
V. P. Shkolyarenko ◽  
K. A. Sirenko
2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


2019 ◽  
Vol 968 ◽  
pp. 96-106
Author(s):  
Oleksandr Pshinko ◽  
Olena Hromova ◽  
Dmytro Rudenko

Study of rheological properties of concrete mixtures based on modified cement systems in order to determine process parameters. Methodology. To study structural-mechanical properties of modified concrete mixtures of different consistency at their horizontal vibrating displacement an oscillatory viscometer was designed. Results. The optimization of the process of vibration displacement of concrete mixtures with the specification of parameters of vibration impacts taking into account structural-mechanical properties of the mixture is performed. It has been established that the viscosity of the modified cement system of the concrete mixture is a variable quantity, which depends on the parameters of the vibration impacts. Scientific novelty. The mechanism of interaction of the modified concrete mixture with the form and the table vibrator during its vibration compaction is determined. On the basis of this, a model of concrete laying process control is proposed, that allows to predict the ability to form a dense concrete structure. Practical significance. Disclosed physical nature of the process of vibrating displacement of modified concrete mixtures using the principles of physical-chemical mechanics of concrete allows reasonably choose the best options for vibration impacts.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-738 ◽  
Author(s):  
Ramzy M. Abumandour ◽  
Islam M. Eldesoky ◽  
Mohamed H. Kamel ◽  
Mohamed M. Ahmed ◽  
Sara I. Abdelsalam

AbstractIn the article, the effects of the thermal viscosity and magnetohydrodynamic on the peristalsis of nanofluid are analyzed. The dominant neutralization is deduced through long wavelength approximation. The analytical solution of velocity and temperature is extracted by using steady perturbation. The pressure gradient and friction forces are obtained. Numerical results are calculated and contrasted with the debated theoretical results. These results are calculated for various values of Hartmann number, variable viscosity parameter and amplitude ratio. It is observed that the pressure gradient is reduced with an increase in the thermal viscosity parameter and that the Hartmann number enhances the pressure difference.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1617 ◽  
Author(s):  
Ruiting Tong ◽  
Zefen Quan ◽  
Yangdong Zhao ◽  
Bin Han ◽  
Geng Liu

In nanomaterials, the surface or the subsurface structures influence the friction behaviors greatly. In this work, nanoscale friction behaviors between a rigid cylinder tip and a single crystal copper substrate are studied by molecular dynamics simulation. Nanoscale textured surfaces are modeled on the surface of the substrate to represent the surface structures, and the spacings between textures are seen as defects on the surface. Nano-defects are prepared at the subsurface of the substrate. The effects of depth, orientation, width and shape of textured surfaces on the average friction forces are investigated, and the influence of subsurface defects in the substrate is also studied. Compared with the smooth surface, textured surfaces can improve friction behaviors effectively. The textured surfaces with a greater depth or smaller width lead to lower friction forces. The surface with 45° texture orientation produces the lowest average friction force among all the orientations. The influence of the shape is slight, and the v-shape shows a lower average friction force. Besides, the subsurface defects in the substrate make the sliding process unstable and the influence of subsurface defects on friction forces is sensitive to their positions.


2011 ◽  
Vol 86 ◽  
pp. 649-652
Author(s):  
Rui Ting Tong ◽  
Geng Liu ◽  
Lan Liu ◽  
Shang Jun Ma

A multiscale method coupled molecular dynamics simulation and finite element method is used to investigate two dimensional nanoscale sliding contacts between a rigid cylindrical tip and an elastic face centered cubic copper substrate with textured surface, in which adhesive effects are considered. Two series of nanoscale surface textures with different asperity shape, different asperity heights and different spacing between asperities are designed. Through the friction forces comparisons between smooth surface and textured surfaces, a better shape is advised to indicate that asperity shape plays an important role in friction force reduction. With proper asperity height and proper spacing between asperities, surface textures can reduce friction forces effectively.


Author(s):  
Aleksandar Tomic ◽  
Shahani Kariyawasam

A lethality zone due to an ignited natural gas release is often used to characterize the consequences of a pipeline rupture. A 1% lethality zone defines a zone where the lethality to a human is greater than or equal to 1%. The boundary of the zone is defined by the distance (from the point of rupture) at which the probability of lethality is 1%. Currently in the gas pipeline industry, the most detailed and validated method for calculating this zone is embodied in the PIPESAFE software. PIPESAFE is a software tool developed by a joint industry group for undertaking quantitative risk assessments of natural gas pipelines. PIPESAFE consequence models have been verified in laboratory experiments, full scale tests, and actual failures, and have been extensively used over the past 10–15 years for quantitative risk calculations. The primary advantage of using PIPESAFE is it allows for accurate estimation of the likelihood of lethality inside the impacted zone (i.e. receptors such as structures closer to the failure are subject to appropriately higher lethality percentages). Potential Impact Radius (PIR) is defined as the zone in which the extent of property damage and serious or fatal injury would be expected to be significant. It corresponds to the 1% lethality zone for a natural gas pipeline of a certain diameter and pressure when thermal radiation and exposure are taken into account. PIR is one of the two methods used to identify HCAs in US (49 CFR 192.903). Since PIR is a widely used parameter and given that it can be interpreted to delineate a 1% lethality zone, it is important to understand how PIR compares to the more accurate estimation of the lethality zones for different diameters and operating pressures. In previous internal studies, it was found that PIR, when compared to the more detailed measures of the 1% lethality zone, could be highly conservative. This conservatism could be beneficial from a safety perspective, however it is adding additional costs and reducing the efficiency of the integrity management process. Therefore, the goal of this study is to determine when PIR is overly conservative and to determine a way to address this conservatism. In order to assess its accuracy, PIR was compared to a more accurate measure of the 1% lethality zone, calculated by PIPESAFE, for a range of different operating pressures and line diameters. Upon comparison of the distances calculated through the application of PIR and PIPESAFE, it was observed that for large diameters pipelines the distances calculated by PIR are slightly conservative, and that this conservativeness increases exponentially for smaller diameter lines. The explanation for the conservatism of the PIR for small diameter pipelines is the higher wall friction forces per volume transported in smaller diameter lines. When these higher friction forces are not accounted for it leads to overestimation of the effective outflow rate (a product of the initial flow rate and the decay factor) which subsequently leads to the overestimation of the impact radius. Since the effective outflow rate is a function of both line pressure and diameter, a simple relationship is proposed to make the decay factor a function of these two variables to correct the excess conservatism for small diameter pipelines.


1995 ◽  
Vol 117 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Andreas A. Polycarpou ◽  
Andres Soom

The instantaneous normal motion between bodies in a sliding contact is an important variable in determining dynamic friction under unsteady sliding conditions. In order to model friction under dynamic conditions, it is therefore necessary to combine a dynamic model of the sliding system with an accurate model of the friction process. In the present work, the nonlinear normal dynamics of a friction test apparatus are described by a linearized model at a particular steady loading and sliding condition in a mixed or boundary-lubricated regime. The geometry is a line contact. The Hertzian bulk contact compliance and film and asperity damping and stiffness characteristics are included as discrete elements. In Part I of the paper, a fifth-order model is developed for the normal dynamics of the system, using both the Eigensystem Realization Algorithm (ERA) and classical experimental modal analysis techniques. In Part II, this system model is combined with a friction model, developed independently, to describe dynamic friction forces under both harmonic and impulsive applied normal loads.


Sign in / Sign up

Export Citation Format

Share Document