scholarly journals Resource-saving milk production technologies with use of easy-assembled premises and high-performance milking plants

Author(s):  
M. M. Lutsenko ◽  
O. Yu. Galay

High productivity of dairy cows in the conditions of new innovative technologies can not be obtained without providing comfortable conditions for their functioning.In this connection, the conditions for maintaining high-yielding cows in various types of livestock buildings are investigated: the traditional, 24.0 m wide and new unassembled, 32.5 m wide and 36.0 m in extreme periods of the year. The different width of the premises is due to the need to use different types of milking plants: MilkProud, Parallel, Carousel and robotic milking systems.Studies have established that volumetric-planning and technological solutions for easy-assembled premises increase the volume of space per head from 45.6 m3 to 96.3 m3 and 129.6 m3. It positively affects the conditions for the maintenance of highly productive cows. The presence in their design of side curtains and light-aeration ridge increases the speed of air in 3 times. This provides a reduction in the concentration of ammonia in 8 times, and bacterial pollution at 18.7 times compared with traditional barn.Increasing the volume of the room up to 129.6m³ per head reduces the bacterial air pollution in the winter period to a minimum value of 2.8 thousand/m³. New elements in the design of easy-assembled spaces provide resource-saving and organizing their lighting.According to the existing standards in Ukraine, the lighting in the feeding area should be at 52 lux. In traditional rooms, this level is achieved only by installing additional energy sources, which provide an increase in lighting from 31 lux to 52 lux. In new types of premises the required level of lighting is provided naturally, which leads to significant energy savings. It was established that technological solutions of easy-assembled premises provide comfortable conditions for recreation of high-yielding cows.In these types of rooms, the animals rest 12.4% and 20.0% more time compared to traditional rooms. Feeding of cows in easy-assembled premises from the stern table provides quick feeding of animals with feed. At the same time the time consumed for feed consumption in new types of barns is significantly less and is 252.0–246.0 min a day compared to 320.2 min in traditional premises where feeding is carried out from traditional feeding troughs.It is positive that in the new types of premises in animals there is a new important element of behavior – the movement, which they spend 8.6% and 9.9% of the time. New types of premises with resource-saving milk production technologies have a positive effect on the conditions for the maintenance of highly productive cows and can be widely implemented in Ukraine.

2021 ◽  
Vol 264 ◽  
pp. 03003
Author(s):  
Oleg Glovatskii ◽  
Jaloliddin Rashidov ◽  
Вoybek Kholbutaev ◽  
Khayrullo Tuychiev

Hydromechanical equipment of pumping stations of irrigation systems, including the main equipment of pumping stations of the Amu-Bukhara machine channel, was taken as the object of research. The study aims to assess the operating conditions of pumping stations and improve the main units' reliability by developing new units that ensure reliable and resource-saving operations. An important consequence of using new elements of irrigation systems during reconstruction is an increase in the unit capacity of regulated pumping units, which gives additional energy savings and reduces technological costs by 15-20%. The practical significance of the research results is based on the developed methods of hydraulic calculation of the flow in the flow section of the pumps, the assessment of reliability during operation under various conditions of the quality of the pumped water, and the criteria of its state.


Author(s):  
Iryna Zakharova

Abstract. In the global practice of application, more than 50% are metal coatings applied by the method of electric arc metallization, which has the following advantages: high productivity, simplicity of equipment, low power consumption, the ability to 6obtaining coatings with high-performance properties through the use of scarce and inexpensive wires of industrial production. But the main drawback is the process of oxidation of alloying elements during transportation of molten electrode particles by spraying airflow. A series of scientists' works are aimed at improving the design of spray heads of electric arc metallizers, which involves improving the design of the air nozzle through the use of inserts and devices providing a change in the spraying airflow, and leads to a significant increase in the price of the process.  To reduce the oxidizing effect of the spraying airflow on the liquid metal of the electrodes the method of pulsating air injection into the electrode melting zone has been developed. This paper presents the influence of the pulsating spraying flow on the indicators of abrasive wear and reduction of oxidation of metal particles, at the arc metallization to obtain coatings with the specified properties and application of resource-saving.


2017 ◽  
Vol 54 ◽  
pp. 146-156
Author(s):  
T. M. Suprovych ◽  
M. P. Suprovych ◽  
R. V. Kolinchuk

Introduction. The main direction of increasing the productivity of milk is to increase the proportion of heredity of the Holstein breed in the genotype of cows. Industrial breeds in Ukraine are improving due to the increase in the Holstein inheritance in the genotype of cows. The "holsteinization" of the most widespread domestic Black-and-White diary breed is intensively conducted. Currently, the percentage of heredity from Holstein is 90% or more. The negative effect of "holsteinization" appeared in reducing the resistance of animals to diseases that led to the spread of necrobacterial pathology. The control of the spread of necrobacteriosis can be based on genetic markers. Important markers can be the allele of the BoLA-DRB3.2 gene responsible for the formation of adaptive immunity. Due to the ambiguity of the results of "holsteinization", the following tasks were solved: To study the genetic structure of the herd for the BoLA-DRB3.2 gene at the beginning of the "holsteinization" and now. To compare the detected genetic structures with the alleles spectrum of North American Holstein and identify quantitative and qualitative changes in the structure of the herd genotype. To determine the effect of "holsteinization" on the dynamics of milk production and the state of morbidity by necrobacteriosis. Materials and methods of research. Comparison of alleles of population of the Ukrainian Black-Pied Dairy (UBPD) breed and Holstein breed was conducted to detect the consequences of "holsteinization" on milk yield and incidence of necrobacteriosis. The data of the allelic polymorphism of the BoLA-DRB3.2 gene of the UBPD10 (2010, n = 162), UBPD15 (2015, n = 114) and two Holstein populations of the USA and Canada were collected. The allelic spectrum was determined by the PCR-RFLP method. The amplification of the BoLA-DRB3.2 gene was performed using 2-step PCR with the use of primers HLO-30, HLO-31 and HLO-32 and allele-specific PCR. Restriction analysis was performed with endonuclease RsaI, HaeIII, BstYI (XhoII). Restriction fragments were separated by electrophoresis in 4% agarose gel. Counting of allele frequencies was performed taking into account the number of homozygotes and heterozygotes found for the corresponding alleles. To determine the phylogenetic relationships between the populations of the studied herds, genetic distance and genetic similarity were determined by the M. Nei method. Individual dairy productivity of cows was estimated for all lactation (regardless of its duration). Average milk yields were determined as the total volume of milk produced divided by the number of dairy cows. Results and discussion. The breeding measures carried out led to the accumulation of alleles characteristic of the Holstein breed. For Holstein, there are eight alleles with a frequency of more than 4%. It is alleles *03, *07, *08, *11, *16, *22, *23, *24. A high degree of consolidation of weighty alleles can be outlined. In total they occupy 84,6% of allele spectrum of the population. Consolidation of such alleles in the herd of the Ukrainian Black-and-White diary breed is much lower - only 52.2%, although it increased by 6.2% over 5 years. Alleles *10, *13 and *28 are "weighty" for the Ukrainian Black-and-White diary breed, but they are almost non-existent in Holsteins. The genetic similarity of the herd UBPD15 and Holstein increased by ΔI = 0,085, and the genetic distance between the herds of the UBPD increased by ΔD = 0,085 for 5 years. The comparison of the allele spectrum of Holstein and the Ukrainian Black-and-White diary breed shows both the accumulation and the elimination of alleles associated with high productivity. The largest consolidation is typical for alleles *24 (+ 6.75%) and *16 (+ 4.65%). The frequency of "milk" alleles *22 and *08 decreased, respectively, by 4.14 and 1.27%. Alleys, which cause low milk productivity, have the following dynamics: * 23 + 2.53%, *11 – 0.67 and *28 – 0.26. The accumulation of alleles *16 and *23 (7.18%) was found that are associated with predisposition to necrobacteriosis and elimination of *03 and *22 alleles (4.75%) that influence on this disease. Conclusions. It is determined that the role of alleles characteristic for Holstein is increasing in the the Ukrainian Black-and-White diary herd. Breeding measures for holsteinization are conducted in the right direction. There is accumulation of alleles associated with high milk productivity and predisposition to necrobacteriosis. It positively affects the growth of milk production and negatively affects the incidence of necrobacteriosis.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


1990 ◽  
Vol 30 (6) ◽  
pp. 801
Author(s):  
D Hamilton ◽  
RC Seirer ◽  
JP Cook

Thirty-two early-summer-calving Angus heifers received 4 rations in early lactation for the last 92 days of drought and then grazed pasture. The aim was to produce calves suitable for slaughter at weaning (i.e. at about 11 months of age) and to maintain the usual calving rate of about 85% at the next calving. Variations on the control ration of 83% cracked wheat and 17% long oaten hay, plus minerals and vitamins, were 44% hay or additions of urea or sodium bicarbonate. The calves received 0.33 kg and later 0.66 kg of pasture hay/head.day. The nitrogen content of the respective rations was 19.3, 17.5, 24.3 and 19.3 g/kg of dry matter. The apparent digestibilities of the organic matter were 66, 68 and 88% for the pasture hay, oaten hay and cracked wheat, respectively. There was no acidosis, but the heifers would only consume at 80% of the intended level of 6.0 kg/head.day for the control ration. Heifer condition score, weight change and milk composition, and calf growth and milk consumption, did not differ (P>0.05) between treatments. The average daily liveweight changes during drought feeding were -0.51 kg for the heifers and +0.64 kg for the calves. There was a tendency to slower eating and fewer calves at the next calving with the urea and bicarbonate rations. The calves were all of slaughter condition at weaning, and on average 84% of the heifers calved at the next calving. The control ration appeared to contain adequate roughage and nitrogen for milk production. The heifers' energy requirement in relation to milk production and liveweight performance was as predicted by the common feeding standards. Feed consumption, although lower than intended and probably constrained by the mineral content of the diet, was adequate in heifers that were initially fat enough to tolerate prolonged weight loss.


2006 ◽  
Vol 129 (2) ◽  
pp. 226-234
Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35L∕s(75cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


2021 ◽  
Author(s):  
SOYEON PARK ◽  
KUN (KELVIN) FU

Polymer nanocomposites have advantages in mechanical, electrical, and optical properties compared to individual components. These unique properties of the nanocomposites have attracted attention in many applications, including electronics, robotics, biomedical fields, automotive industries. To achieve their high performance, it is crucial to control the orientation of nanomaterials within the polymer matrix. For example, the electric conductivity will be maximized in the ordered direction of conductive nanomaterials such as graphene and carbon nanotubes (CNTs). Conventional fabrication methods are commonly used to obtain polymer nanocomposites with the controlled alignment of nanomaterials using electric or magnetic fields, fluid flow, and shear forces. Such approaches may be complex in preparing a manufacturing system, have low fabrication rate, and even limited structure scalability and complexity required for customized functional products. Recently, additive manufacturing (AM), also called 3D printing, has been developed as a major fabrication technology for nanocomposites with aligned reinforcements. AM has the ability to control the orientation of nanoparticles and offers a great way to produce the composites with cost-efficiency, high productivity, scalability, and design flexibility. Herein, we propose a manufacturing process using AM for the architected structure of polymer nanocomposites with oriented nanomaterials using a polylactic acid polymer as the matrix and graphite and CNTs as fillers. AM can achieve the aligned orientation of the nanofillers along the printing direction. Thus, it enables the fabrication of multifunctional nanocomposites with complex shapes and higher precision, from micron to macro scale. This method will offer great opportunities in the advanced applications that require complex multiscale structures such as energy storage devices (e.g., batteries and supercapacitors) and structural electronic devices (e.g., circuits and sensors).


1958 ◽  
Vol 38 (2) ◽  
pp. 148-159 ◽  
Author(s):  
M. A. MacDonald ◽  
J. M. Bell

This report presents effects of low temperatures on the feed consumption and efficiency of milk production of six mature, lactating, Holstein-Friesian cows that were confined in stanchions for three fortnightly experimental periods during which ambient temperatures measured in degree-hours per day (d-h/day) ranged from 110 to 1152 and daily minimum ambient air temperature (DMAAT) varied from 0° to 38°F. Applying results obtained, it was calculated that as temperatures decreased, i.e., d-h/day increased from 100 to 1200 and DMAAT decreased from 40° to 0°F, average daily intakes of total dry matter, hay, and gross and digestible Calories increased approximately 6.4 lb., 5.3 lb., 13 Therms and 9 Therms, respectively. Each of these increases was statistically significant at the 1 per cent level. Reductions in temperature also decreased gross and net caloric efficiencies of milk production approximately 10 and 8.5 per cent, respectively. These decreases were significant at the 2 per cent level. No correlation was evident between crude protein utilization and temperature.Results indicated that thermal stress was not overcome adequately by supplementary hay intake alone and that appetite stimulation by low temperatures had a carry-over effect continuing at least 24 hours. For continued efficient milk production during winters where low ambient temperatures are prevalent these results suggest it is necessary to provide some form of building insulation, ambient heat and/or provide a high energy supplement to otherwise adequate production rations.


2017 ◽  
Vol 898 ◽  
pp. 2181-2186
Author(s):  
Jing Li ◽  
Jun Rong Yu ◽  
Jing Zhu ◽  
Yan Wang ◽  
Zu Ming Hu ◽  
...  

Solution blow spinning (SBS) is an innovative nanofiber fabricating method with high productivity. 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) / p-phenylenediamine (PDA) / 4,4'-oxydianiline (ODA) co-polyimide nanofiber membrane was efficiently produced by SBS followed by imidization from precursor polyamic acid (PAA) nanofiber membrane in the paper. The morphologies and structures of the obtained PAA and PI nanofiber membrane were examined by SEM and FT-IR. The effect of thermal imidization temperature on the tensile property was investigated. The thermal stability of polyimide nanofiber membrane was also characterized by TGA.


Sign in / Sign up

Export Citation Format

Share Document