scholarly journals EFFECT OF FOLIAR APPLICATION OF AMINOACIDS ON PLANT YIELD AND PHYSIOLOGICAL PARAMETERS IN BEAN PLANTS IRRIGATED WITH SEAWATER

2014 ◽  
Vol 20 (1) ◽  
pp. 140-152 ◽  
Author(s):  
Magdi T. ABDELHAMID ◽  
Mervat SH SADAK ◽  
Urs SCHMIDHALTER
2020 ◽  
Vol 48 (4) ◽  
pp. 2167-2181
Author(s):  
Alondra SALCIDO-MARTÍNEZ ◽  
Esteban SÁNCHEZ ◽  
Lorena P. LICÓN-TRILLO ◽  
Sandra PÉREZ-ÁLVAREZ ◽  
Alejandro PALACIO-MÁRQUEZ ◽  
...  

One of the most significant challenges humanity will face is food production. In order to preserve the output, mineral fertilizers are essential. However, it's not a suitable option in the long term. Magnesium is a crucial macronutrient, but it is the most limiting element in agriculture. Nanotechnology, with the implementation of nanofertilizers, is an excellent alternative since it provides nutrients, supports growth, and improves production; this in low amounts is more sustainable than conventional fertilizers. Although there is a piece of limited information regarding the proper foliar application of this macronutrient, the study helped to validate the effect of the foliar application of Magnesium nano fertilizer on the physiological, biochemical responses and yield of bean plants. Bean plants ejotero cv. ‘Strike’ and magnesium nanoparticles were applied at doses of 0, 50, 100, and 200 ppm. The biomass accumulation, yield, activity of the enzyme nitrate reductase, and photosynthetic pigments were evaluated. The foliar application of Mg nanoparticles at 50 ppm generated the highest amount of biomass and photosynthetic pigments. The 100 ppm dose improved pods yield and allowed the increased activity of the Nitrate Reductase enzyme. The results obtained suggest that, when increasing the dose of magnesium in plants, the amount of carotenes decreases.


2016 ◽  
Vol 47 (2) ◽  
Author(s):  
N. H. Khalil

An experiment was conducted in unheated greenhouse units of the Department of Horticulture and Landscape -College of Agriculture- University of Baghdad on the first of October,   to observe the effects of amony interaction of crown diameter, chilling,  and foliar application of gibberellic acid on vegetative growth, and reproductive in cv. ‘Festival’ of strawberry (Fragaria x ananassa (Duch)). Using randomized Complete Block Design (RCBD), Plants were sorted into two groups according to crown diameter (11-15mm (Cd1)  and  6-10 mm (Cd2)), each of them sorted into two groups [Ch0 (without cold storage) and Ch1 (kept in a cold storage for  three weeks at 1-2°C), gibberellic acid was sprayed on plants, with concentration treatments included a control (G0) (distilled water), 150 mg. L–1 (G1) and 300 mg. L–1 (G2).The results showed the highest leaf number and Leaf area. Plant-1, (26.33), (29.70 dcm2) in (Cd1.Ch1.GA0) and (Cd1.Ch1. GA1) respectively, Number of stolon increased significantly by GAs application, the highest number were (8.3) in (Cd1.Ch1. GA2). The highest value of the TSS % was produced from the plants under the effect of  the treatment (Cd1.Ch1. GA0) (8.5%) and the highest pH were 3.70 from the treatment (Cd2.Ch0.GA2). The results indicated the superiority of treatment (Cd1.Ch0.GA0)     in fruit number (22.4), weight (17.77g) and a plant yield (398.2g).


2021 ◽  
Author(s):  
Marcilene Machado dos Santos Sarah ◽  
Renato de Mello Prado ◽  
Jonas Pereira de Souza Júnior ◽  
Gelza Carliane Marques Teixeira ◽  
João Carlos dos Santos Duarte ◽  
...  

Abstract Potassium (K) deficiency affects physiological performance and decreasing vegetative growth in common bean plants. However, silicon (Si) supplied via nutrient solution or foliar application may relieve nutritional stress. Thus, two experiments were carried out: initially, a test was performed to determine the best source and concentration of leaf-applied Si. Subsequently, the chosen Si source was applied via nutrient solution or via leaf to verify if it is efficient in alleviating the effects caused by K deficiency. To that end, a completely randomized 2 x 3 factorial design was used, with two levels of K: deficient (0.2 mmol L− 1 of K) and sufficient (6 mmol L− 1 of K); and Si: via nutrient solution (2 mmol L− 1 of Si) or foliar spray (5.4 mmol L− 1 of Si) and control (0 mmol L− 1 of Si). In the first experiment, foliar spraying with sodium silicate and stabilized potassium at a concentration of 5.4 mmol L− 1 was better in favoring the physiology of bean plants. In the second experiment, K deficiency without the addition of Si compromised the plant's growth. Si applied through nutrient solution or foliar spray relieved K deficiency stress, increasing chlorophylls and carotenoids content, photosynthetic activity, water use efficiency and vegetative growth.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 125 ◽  
Author(s):  
Pedro García-Caparrós ◽  
Alfonso Llanderal ◽  
Elodie Hegarat ◽  
María Jiménez-Lao ◽  
María Teresa Lao

We evaluated two osmotic adjustment substances (glycine betaine (GB) and glycine (G) and a combination of both glycine + glycine betaine (G + GB) using two modes of application; irrigation and foliar sprays with Dracaena sanderiana plants. The plants were grown in containers and subjected to two levels of NaCl concentrations (2.0 and 7.5 dS m−1) over 8 weeks. Growth, pigment concentrations, and physiological parameters were assessed at the end of the trial. The foliar application of GB resulted in most optimal plant growth and biomass production in the presence of NaCl. The chlorophyll and carotenoid concentrations showed different trends depending on the osmotic adjustment substance applied and the mode of application. Stomatal density and dimensions varied considerably with respect to the osmotic adjustment substance supplied. The concentration of soluble sugars in leaves did not show a clear trend under the different treatments assessed. The exogenous application of G resulted in the highest concentration of free proline and proteins in leaves. The antioxidant capacity in leaves increased with both osmotic adjustment substances, and both means of application, under low and high saline conditions. We concluded that the foliar application of GB can be recommended in order to achieve cost-effective growth of D. sanderiana under saline conditions.


2020 ◽  
Vol 48 (3) ◽  
pp. 1317-1331
Author(s):  
Nurdilek GULMEZOGLU ◽  
Ezgi İZCI

This study aimed to investigate the effects of different humic acid application methods (control, soil, foliar and soil + foliar) on chlorophyll content, dry matter weight of shoots and roots, concentrations of potassium (K), calcium (Ca) and sodium (Na), and K/Na and Ca/Na ratios of bean plants exposed to increasing salinity levels (0, 50, 100 and 150 mM). The effects of salt damage on shoots and roots of bean plants were significantly differed in humic acid application methods. Chlorophyll content decreased with the increase in salt doses at control and soil application of humic acid, while the decrease in chlorophyll content was lower in foliar application of humic acid. Shoot dry weight was not affected by humic acid applications, while root dry weight increased in soil + foliar application method. Soil + foliar humic acid application caused the highest shoot and root Na concentrations. Shoot Ca (2.61%) concentration in soil + foliar application was significantly higher compared to the other treatments, while the highest Ca concentration in roots (1.55%) was recorded in soil humic acid application method. The highest K concentration in roots was obtained in the control treatment (2.50%) followed by soil + foliar humic acid application (2.48%). The ratios of K/Na and Ca/Na in shoots decreased with the increase in salt application rates. The highest shoot K/Na (1456.1%) and Ca/Na (1274.1%) ratio in humic acid x salt interactions was found in soil application of humic acid without salt treatment. The root and shoot dry matter yield and K and Ca concentrations of the plants indicated that soil+foliar application method has a preventive effect for the plants against the 50 mM salt damage. The results showed that soil+foliar humic acid application in addition to the mineral fertilization required for beans can contribute to the growth and mineral nutrition of the plants under moderate salt stress (50 mM NaCl).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Md. Mezanur Rahman ◽  
Mohammad Golam Mostofa ◽  
Md. Abiar Rahman ◽  
Md. Robyul Islam ◽  
Sanjida Sultana Keya ◽  
...  

Abstract The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.


Author(s):  
Luiz Fernando Ganassali de Oliveira Júnior ◽  
Patrícia Lima de Souza Santos ◽  
Roberta Samara Nunes de Lima ◽  
Maria Priscilla Celestino Silveira ◽  
Jailson Lara Fagundes ◽  
...  

Abstract: The objective of this work was to evaluate the effects of CaO-based particle film on the physiological parameters of cowpea (Vigna unguiculata) subjected to water restriction. Plants were subjected to two levels of soil moisture and three concentrations of the film, as follows: control, without film + 100% crop evapotranspiration (ETc); without film + 50% ETc; 5% CaO + 50% ETc; 10% CaO + 50% ETc; 5% CaO + 100% ETc; and 10% CaO + 100% ETc. Plants treated with 50% ETc remained stable with the application of 10% CaO particle film and showed high photosynthetic assimilation of CO2 (32 μmol m-2 s-1), moderate transpiration (5.6 mmol m-2 s-1), maintenance of chlorophyll content, and greater intrinsic water-use efficiency (IWUE, 226.65 μmol mol-1) and instantaneous water-use efficiency (6.06 μmol mmol-1) than plants of the other treatments. Control plants and plants at 5% CaO + 50% ETc showed, respectively, photosynthetic assimilation of CO2 at 15.34 and 15.94 μmol m-2 s-1, transpiration at 3.51 and 3.45 mmol m-2 s-1, and IWUE at 177.7 and 198.9 μmol mol-1. The CaO-based particle film is effective in protecting bean plants subjected to water restriction.


Sign in / Sign up

Export Citation Format

Share Document