scholarly journals Wave energy resource assessment at southern coast of the Gulf of Mexico

DYNA ◽  
2015 ◽  
Vol 82 (193) ◽  
pp. 49-55
Author(s):  
Alejandro Gonzalez-Carrillo ◽  
Raziel Ruiz-Cabrera ◽  
Quetzalcoatl Cruz Hernandez-Escobedo ◽  
Aranzazú Fernández-García ◽  
Francisco Manzano-Agugliaro

Find alternative energy sources is one of the challenges that came with XXI century and this paper makes an analysis about wave energy, which presents several advantages over fossil based energy and even other renewable energy sources. Among them are its low environmental impact and its high energy density. Wave energy is beginning to be considered as an important and promising renewable resource in many countries. The objective of this paper is to evaluate the wave energy potential at the southern coast of the Gulf of Mexico; the sea states were observed and was obtained that the available mean wave power is 55.91 W/m. In addition, this paper shows that, in the study site, the most energetic season is fall and the less energetic season is spring. This differs from the global trend, were the most energetic season is winter, and the less energetic season is spring.

2020 ◽  
Author(s):  
Dongkyoung Lee

Abstract Currently, alternative energy sources are attracting attention owing to environmental pollution and the depletion of fossil fuels. Lithium-ion batteries have a light weight, high energy density, high power density, and long cycle life, making them attractive alternative energy sources. Numerous studies have been conducted on high-performance batteries. However, most studies have focused on improving active material characteristics. Thus, there is a lack of research on battery performance enhancement through the improvement of the battery manufacturing process. In this study, we performed electrode structuring using a nanosecond laser in the power range of 1 W to 19 W (2 W intervals). The geometric changes after laser structuring were observed using a scanning electron microscope, and the electrode geometries were classified and measured in terms of ablation width and depth. The aspect ratio, removal amount, and removal rate of the active material were analyzed after laser structuring. A maximum aspect ratio of 0.77 was achieved. Additionally, the removal amount and removal rate of the active material increased with the increase in laser power. Therefore, we concluded that electrode geometry can be controlled using a nanosecond laser.


2021 ◽  
Vol 4 (2) ◽  
pp. 138-144
Author(s):  
Mohd Sukhairi Mat Rasat ◽  
Muhammad Iqbal Ahmad ◽  
Mohd Hazim Mohamad Amini ◽  
Razak Wahab ◽  
Puad Elham ◽  
...  

Currently, the primary energy supply in Malaysia is dominant by non-renewable energy sources such oil, natural gas and coal which contributed to the scarcity of these sources and occurrence of global warming. This phenomenon raises the public concerns to diversify the energy sources to sustain energy availability. To address these predicaments, biomass sources is among the prominent alternative energy sources since it is renewable and possesses minimal harms to the environment. Thus, the woody plant with high growth rate and high energy content that can be used to serve as potential biomass energy sources. In this study, small diameter (5-8cm) of wild Acacia mangium species have been determined and compared accordingly three (3) different portions (bottom, middle and top) and two (2) different particle sizes (0.5 and 1.5mm). The analysis conducted to determine the properties of raw material of Acacia mangium as biomass energy sources were proximate, physical and energy content properties. The result obtained for the energy content analysis of small diameter wild Acacia mangium has a mean calorific value range from 16.35 to 18.35MJ/kg between portions and particle sizes. In order to determine the effect of portions and particle sizes on each of the proximate, physical and energy content properties, two-way ANOVA was performed. It shows that both the portions and particle sizes have significant effect on calorific value (energy content) of small diameter wild Acacia mangium at 99% of confidence level. In a nutshell, the biomass energy properties of small diameter wild Acacia mangium with different portions and particle sizes were being determined.


2021 ◽  
Author(s):  
Luboslav Straka ◽  
Tibor Krenicky

In recent years, there has been an increased emphasis worldwide on the quality of the environment, especially with an orientation towards the application of renewable energy sources. In addition, we are increasingly encountering experimentation aimed at obtaining new green energy sources. One of such sources is biomass. Biomass has been used since the middle ages as a source of heat and light energy. Today, however, we have technologies that allow us to obtain not only heat but also electricity from biomass, or to convert biomass into materials with high energy density and purity. The energy thus transformed can then be used, for example, as a propellant. At the same time, this valuable source of clean energy can be easily transported to the place of consumption. By applying biomass as a source of green energy, we can make a significant contribution to relieving the environment from harmful effects. In recent years, an increased interest in energy obtained from biomass can be observed in Slovakia. Its technical potential is the greatest among other renewable energy sources, and its non-use would essentially be wastage. Therefore, the aim of the paper was to describe two possibilities of transformation of biomass in the form of its energy recovery into the type of energy used for the production of mechanical, thermal and electrical energy. At the same time, in addition to obtaining a suitable form of energy from biomass, another environmental benefit was sought in the form of soil decontamination. In this regard, there is an energetically important crop, which is known under the Latin name Amaranthus caudatus. It is an energy crop that can be grown on slightly contaminated soil with some restrictions. Two methods of energy recovery of this crop were compared. In the first case it was its compaction into briquettes, in the second case it was a process of anaerobic fermentation with subsequent production of biogas. Based on the performed analysis, it was found that these are almost equivalent energy sources. Although both methods of transformation and energy recovery of the green part of Amaranthus caudatus crops have a number of advantages and disadvantages, it can be clearly stated that the positives significantly outweigh the negatives. Therefore, it is recommended to apply this crop as a valuable source of energy for use in real conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Slavko Mentus

Since the first oil crisis in early 70-ties, the electrochemists strive to develop a chemical power source able to replace the liquid fossil fuels in traffic. Noticeable success was achieved in the decade 1980-1990. Thanks to a new class of materials – intercalate compounds, a new battery called lithium-ion battery was commercialized, having much higher energy density than its predecessors. In this work the origin of its high energy density is explained. The emergence of new battery supported effectively the expansion of use and the development of portable electronics - mobile phones, lap-top calculators tablets etc. Since 2010, connected to the global intentions to prevent climate changes, the batteries received the role of the energy sources of electric cars. Recently, connected to the rising use of renewable energy sources known to suffer of changeable intensity, batteries take also the role of grid energy storage, having the function to smooth the disturbances in grid voltage. All this caused huge rise in batteries usage, and poses the question about the availability of global resources of lithium, cobalt and nickel needed for battery production. The recent forecast is that these resources will be exhausted very soon in the decade 2030-2040. Thus, there is a strong need to search for new battery types, to maintain, at least partly, available lithium resources for more demanding applications. As a part of solutions having real perspective, the development of sodium-ion battery is currently in progress. In that sense, some perspective anode and cathode materials were considered.


2021 ◽  
Author(s):  
Hyeonjung Jung ◽  
Seokhyun Choung ◽  
Jeong Woo Han

Water electrolysis is a promising solution to convert and store renewable energy sources with hydrogen as a high-energy-density energy carrier. Although alkaline conditions extend the scope of electrocatalysts beyond precious...


2019 ◽  
pp. 46-70
Author(s):  
Angeles Longarela-Ares

Sustainability and energy efficiency are topics of great interest, especially in the sports facilities management sector due to the high energy costs. One of the MOST Relevant costs is derived from the consumption of domestic hot water (DHW) and swimming pool. The objective of This work is to study new ways to manage and reduce costs through the These valuation of the use of traditional and renewable energy sources and the Necessary investment to Contribute to the promotion of a more sustainable vision of business management. Four alternative energy installations (Natural Gas, Biomass, Solar Thermal Combined With Natural Gas or Biomass) are Proposed, it is verified Which is more suitable in terms of financial viability and one of them is selected. For This purpose, we start from a hypothetical companycase and a 20-year forecast of the energy consumption, the costs and initial investment of each alternative is made; viability analysis are performed With the Net Present Value (NPV) and the results are Obtained Compared. The Conclusion Is That The most Appropriate solution, from a financial point of view, for sports centers similar to the company-case and With the Considered Circumstances, is the installation of Biomass, an option That, in Addition, can be Considered respectful With the environment.


2021 ◽  
Author(s):  
Chengkang Luo ◽  
Xiao Li ◽  
Xiang Wu

With the excessive consumption of non-renewable energy sources and subsequent environmental pollution, one converts their research focuses to develop some emerging energy storage devices with desired performances. Aqueous zinc-ion batteries...


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


2020 ◽  
Vol 16 (5) ◽  
pp. 885-904
Author(s):  
M.E. Frai

Subject. The article discusses limited sources of energy nowadays and an ongoing survey of new ones. I focus on fuel and energy complexes worldwide and in Russia. Objectives. The study is to analyze the future use of alternative energy sources in the fuel and energy complex nationwide and worldwide. I review the existing energy sources of the fuel and energy complex in the global and regional markets, specifically the alternative ones. Methods. The study relies upon methods of statistics, analysis and systems approach. Results. The article demonstrates that the fuel and energy complex strongly depends on the current situation in the energy resource market, which is difficult to forecast. If we continue relying on traditional energy resources, we get exposed to some risks affecting the sustainable development of the economy. Russia should diversify the power engineering sector by developing alternative energy sources. The article sets forth the economic rationale for alternative sources and key steps Russia shall make. Conclusions and Relevance. Considering the current situation in the energy balance, alternative energy is what any advanced society seeks for, being supported by manufacturers, governmental institutions, and researchers, though low profitability and high infrastructure costs impede its development. In Russia, these challenges are even more palpable. However, even now Russia is able to find alternative energy solutions. In addition to advantages of alternative energy, which is globally proclaimed, they will also help Russia diversify and update the economic system.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


Sign in / Sign up

Export Citation Format

Share Document