scholarly journals Mineralogy and Fluid Inclusions of the Cunas Emerald Mine, Maripí, Boyacá, Colombia

2021 ◽  
Vol 25 (2) ◽  
pp. 139-156
Author(s):  
Fernando Helí Romero Ordóñez ◽  
Andrés Felipe González-Durán ◽  
Javier García-Toloza ◽  
Jimmy Rotlewicz Cohen ◽  
Carlos Julio Cedeño Ochoa ◽  
...  

The Cunas mine is currently one of the major producers of fine emeralds in Colombia; its emeralds typically display a magnificent green hue, which is highly appreciated in the world market. The mineralization is found in vanadium-rich black shales of the Muzo formation; emeralds occur in pockets within hydrothermal veins and breccias, consisting mostly of calcite, dolomite, albite, quartz, and minor pyrite, parisite-(Ce), and fluorite; hydrothermal alteration is pervasive and dominated by albitization and carbonatization. Emerald-hosted fluid inclusions are highly abundant and remarkably large and complex. Poly-phase inclusions are ubiquitous, occur both in emeralds and gangue minerals, and consist of two daughter crystals (typically halite and calcite or siderite; exceptionally parisite-(Ce)), a liquid brine, a CO2-N2-CH4-rich gas bubble, and occasionally minor liquid CO2. Vapor-rich inclusions were observed in quartz, and two-phase inclusions were identified in calcite and dolomite, thus suggesting a complex fluid evolution. Microthermometry analysis indicates the emerald-forming fluids were trapped at relatively low temperature ≈ 260-340°C and pressure ≈ 875-2400 kbar, with relatively high density —1.03 g/cm³—, and elevated salinity 39% NaCl eq. Wt.; other aqueous components detected include CaCl2, KCl, and FeCl2. Based on these data, we propose the emerald mineralization at the Cunas mine was originated by the mixing of two hydrothermal fluids of different sources; one fluid with high salinity derived from evaporite dissolution, responsible for the albitization of the host rocks; the second is a calcium-rich fluid evolved from connate waters, which was equilibrated by the interaction with calcareous and organic-rich wall rocks. As a result, emerald mineralization took place at structurally favorable sites where fluid mixing was promoted. The described geological and physicochemical features for the Cunas mine, are in agreement with an epigenetic sediment-hosted mineralization —Colombian-type— formed by the circulation and mixing of relatively low-temperature non-magmatic fluids.

Geologos ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Amir Haji Babaei ◽  
Alireza Ganji

Abstract The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 – Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 654
Author(s):  
Kyaw Thu Htun ◽  
Kotaro Yonezu ◽  
Aung Zaw Myint ◽  
Thomas Tindell ◽  
Koichiro Watanabe

Most of the granite-related Sn–W deposits in Myanmar are located in the Western Granitoid Province (WGP) of Southeast Asia. The Tagu deposit in the southern part of the WGP is a granite related Sn–W deposit. The biotite granite is composed of quartz, feldspars (plagioclase, orthoclase, and microcline), and micas (muscovite and biotite) and belongs to S-type peraluminous granite. Abundances of large-ion lithophile elements (LILEs), such as Rb, K, and Pb, coupled with the deficiency of high-field-strength elements (HFSEs), such as Nb, P, and Ti, indicate that the parental magma for the Tagu granite was derived from the lower continental crust at syn-collisional setting. Mineralized veins consist of early-formed oxide ore minerals, such as cassiterite and wolframite, which were followed by the formation of sulfide minerals. Three main types of fluid inclusions were distinguished from the mineralized quartz veins hosted by granite and metasedimentary rocks: Type-A—two phases, liquid (L) + vapor (V) aqueous inclusions; Type-B—two phases, vapor (V) + liquid (L) vapor-rich inclusions; And type-C—three phases, liquid + CO2-liquid + CO2-vapor inclusions. Quartz in the veins hosted in granite corresponding with earlier deposition contains type-A, type-B, and type-C fluid inclusions, whereas that in the veins hosted in metasedimentary rocks corresponding with later deposition contains only type-A fluid inclusions. The homogenization temperatures of type-A inclusions range from 140 °C to 330 °C (mode at 230 °C), with corresponding salinities from 1.1 wt.% to 8.9 wt.% NaCl equivalent for quartz veins hosted in metasedimentary rocks, and from 230 °C to 370 °C (mode at 280 °C), with corresponding salinities from 2.9 wt.% to 10.6 wt.% NaCl equivalents for quartz veins hosted in granite. The homogenization temperatures of type-B vapor-rich inclusions in quartz veins in granite range from 310 °C to 390 °C (mode at 350 °C), with corresponding salinities from 6.7 wt.% to 12.2 wt.% NaCl equivalent. The homogenization temperatures of type-C H2O–CO2–NaCl inclusions vary from 270 °C to 405 °C (mode at 330 °C), with corresponding salinities from 1.8 wt.% to 5.6 wt.% NaCl equivalent. The original ascending ore fluid was probably CO2-bearing fluid which evolved into two phase fluid by immiscibility due to pressure drop in the mineralization channels. Furthermore, the temperature and salinities of two-phase aqueous fluids were later most likely decreased by the mixing with meteoric water. The salinities of the type-B vapor-rich inclusions are higher than those of the type-C CO2-rich inclusions, which may have resulted from CO2 separation from the fluids. The escape of gases can lead to an increase in the salinity of the residual fluids. Therefore, the main ore-forming mechanisms of the Tagu Sn–W deposit are characterized by fluid immiscibility during an early stage, and fluid mixing with meteoric water in the late stage at a lower temperature.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 586 ◽  
Author(s):  
Sun ◽  
Ren ◽  
Cao ◽  
Hao ◽  
Gao

The Shanmen Ag deposit, located in the southeastern part of the Siping area, Jilin Province, is one of the large-scale Ag deposits in Northeastern (NE) China. Almost all Ag orebodies, Ag-bearing quartz-sulfide veins are strictly controlled by NE-trending faults or brittle fractures and are hosted in the Yanshanian monzonite and quartz diorite. In terms of deposit geology, three mineralization stages are recognized: the pyrite-quartz stage (I), the quartz-Ag-polymetallic sulfide stage (II), and the carbonate-quartz stage (III). The research results of the fluid inclusions in the different stages indicate that the early stage (Stage I) mainly contains three types of fluid inclusions: liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), and CO2 aqueous multi-phase (C-type). The fluid belongs to a medium–high temperature and medium–low salinity H2O-NaCl-CO2 system and has boiling characteristics. The middle stage (Stage II) is mainly characterized by liquid-rich two-phase (L-type) and vapor-rich two-phase (V-type) inclusions, in which the mixing of fluids of different nature leads to the escape of CO2. Only liquid-rich two-phase (L-type) inclusions are distinguished in the late stage (Stage III). The fluids of two later stages belong to the medium-low-temperature and low-salinity H2O-NaCl system. Homogenization temperatures from the early to late stages range from 272.2 to 412.5 °C, 124.1 to 313.3 °C, and 128.6 to 224 °C, respectively. Fluid salinities in the early to late stages range from 1.6 to 12.1, 1.4 to 8.9, and 0.4 to 5.8 wt.% NaCl equivalent, respectively. The gradually decreasing trends of homogenization temperatures and salinities and the reduction in the CO2 content indicate that the release of CO2 and the low-temperature environment are important causes of the precipitation of Ag-bearing minerals. The δ18OH2O values of the ore-bearing quartz veins in the different stages range from −3.7 to +8.1‰, and the δD values of fluid inclusions in the quartz range from −113 to −103‰, indicating that the initial ore-forming fluid was mainly derived from magma and that the input of meteoric water gradually increased during the mineralization process. The δ34S values (ranging from −11.4‰ to +1.8‰) and Pb isotope compositions (206Pb/204Pb = 18.143–18.189, 207Pb/204Pb = 15.543–15.599, 208Pb/204Pb = 38.062–38.251) of sulfides suggest that the ore-forming materials have mixed mantle and crustal sources. Therefore, we propose that the release of CO2 and the low-temperature environment are important conditions for silver minerals precipitation, and the mixing of fluids of different nature is the dominant mechanism causing precipitation. The Shanmen Ag deposit can be classified as an intrusion-related medium–low temperature hydrothermal vein-type deposit.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


Author(s):  
I K Smith

The world market for systems for power recovery from low-grade heat sources is of the order of £1 billion per annum. Many of these sources are hot liquids or gases from which conventional power systems convert less than 2.5 per cent of the available heat into useful power when the fluid is initially at a temperature of 100° C rising to 8–9 per cent at an initial temperature of 200°C. Consideration of the maximum work recoverable from such single-phase heat sources leads to the concept of an ideal trilateral cycle as the optimum means of power recovery. The trilateral flash cycle (TFC) system is one means of approaching this ideal which involves liquid heating only and two-phase expansion of vapour. Previous work related to this is reviewed and details of analytical studies are given which compare such a system with various types of simple Rankine cycle. It is shown that provided two-phase expanders can be made to attain adiabatic efficiencies of more than 75 per cent, the TFC system can produce outputs of up to 80 per cent more than simple Rankine cycle systems in the recovery of power from hot liquid streams in the 100–200°C temperature range. The estimated cost per unit net output is approximately equal to that of Rankine cycle systems. The preferred working fluids for TFC power plants are light hydrocarbons.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xinglin Chen ◽  
Yongjun Shao ◽  
Chunkit Lai ◽  
Cheng Wang

The Longmendian Ag–Pb–Zn deposit is located in the southern margin of the North China Craton, and the mineralization occurs mainly in quartz veins, altered gneissic wallrocks, and minor fault breccias in the Taihua Group. Based on vein crosscutting relations, mineral assemblages, and paragenesis, the mineralization can be divided into three stages: (1) quartz–pyrite, (2) quartz–polymetallic sulfides, and (3) quartz–carbonate–polymetallic sulfides. Wallrock alteration can be divided into three zones, i.e., chlorite–sericite, quartz–carbonate–sericite, and silicate. Fluid inclusions in all Stage 1 to 3 quartz are dominated by vapor-liquid two-phase aqueous type (W-type). Petrographic and microthermometric analyses of the fluid inclusions indicate that the homogenization temperatures of Stages 1, 2, and 3 are 198–332°C, 132–260°C, and 97–166°C, with salinities of 4.0–13.3, 1.1–13.1, and 1.9–7.6 wt% NaCleqv, respectively. The vapor comprises primarily H2O, with some CO2, H2, CO, N2, and CH4. The liquid phase contains Ca2+, Na+, K+, SO42−, Cl−, and F−. The sulfides have δ34S=–1.42 to +2.35‰ and 208Pb/204Pb=37.771 to 38.795, 207Pb/204Pb=15.388 to 15.686, and 206Pb/204Pb=17.660 to 18.101. The H–C–O–S–Pb isotope compositions indicate that the ore-forming materials may have been derived from the Taihua Group and the granitic magma. The fluid boiling and cooling and mixing with meteoric water may have been critical for the Ag–Pb–Zn ore precipitation. Geological and geochemical characteristics of the Longmendian deposit indicate that the deposit is best classified as medium- to low-temperature intermediate-sulfidation (LS/IS) epithermal-type, related to Cretaceous crustal-extension-related granitic magmatism.


Author(s):  
Lu Qiu ◽  
Rolf D. Reitz

Condensation of gaseous fuel is investigated in a low temperature combustion engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng-Robinson equation of state and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections, when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter and unburned hydrocarbons.


2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Montgarri Castillo-Oliver ◽  
Joan Carles Melgarejo ◽  
Lisard Torró ◽  
Cristina Villanova-de-Benavent ◽  
Marc Campeny ◽  
...  

The Eureka deposit in Castell-estaó in the Catalan Pyrenees is a Cu–U–V deposit, hosted by Triassic red-bed sandstones, and classified here as a low-temperature, sandstone-hosted stratabound metamorphite U deposit. The main mineralisation is stratabound, related to coal-bearing units and produced during the Alpine deformation by migration of hydrothermal fluids. In this stage, the original sedimentary and diagenetic components (quartz and calcite, micas, hematite and locally apatite) were replaced by a complex sequence of roscoelite, fine-grained REE phosphates, sulphides and Ni–Co arsenides and sulpharsenides, Ag–Pb selenides, bismuth phases, sulphosalts and uraninite. The black shales of the Silurian sediments underlying the deposit and the nearby Carboniferous volcanoclastic rocks are interpreted as the source of the redox-sensitive elements concentrated in Eureka. The sulphur source is related to leaching of the evaporitic Keuper facies. The REE transport would be facilitated by SO4-rich solutions. The reduction of these solutions by interaction with organic matter resulted in the widespread precipitation of REE and redox-sensitive elements, including many critical metals (V, Bi, Sb, Co), whereas barite precipitated in the oxidized domains. The occurrence of similar enrichments in critical elements can be expected in other similar large uranium deposits, which could be a source of these elements as by-products.


Sign in / Sign up

Export Citation Format

Share Document