scholarly journals BASE OILS BASES SYNTHESIZED USING TECHNOLOGIES OF RECYCLING WASTE PRODUCTS OF THERMOPLASTICS

Author(s):  
I. Mandziuk ◽  
K. Prisyazhna

We offer the technology of synthesis of the basic foundations of lubricants from natural raw materials – animal and vegetable fats. The relevance and novelty of the research is to use the technology of recycling polymer waste. This allows adjusting the rheological, physical, mechanical properties of lubricants. We propose a method to estimating the propensity to oxidation of natural fats based rheometric measurements. We studied the efficiency of the various classes of industrial antioxidants.

2013 ◽  
Vol 795 ◽  
pp. 324-328
Author(s):  
M.A.M. Daud ◽  
M.Z. Selamat ◽  
A. Rivai

Contruction concrete that use of insulation wall in building construction faces some problems such as having high weight, very reflective sound, heat transfer (the effectiveness of heat conductivity) incompetence and mechanical properties (strength) constraints. The sounds which impinge the wall cannot be absorbed efficiently but instead gives high reflection. This causes some noise of high echo in a room. So a good acoustic insulation must be efficient in absorbing the sound. This project proposes lightweight concrete as a replacement for insulation wall. This lightweight concrete will be developed using thermoplastic polymer waste which is recycled plastic bottles, sand, water, and cement. This research used thermoplastic polymer waste which is PET (Polyethylene Terephthalate) material as the reinforcement material to replace small gravel in lightweight concrete. All its composition percentage of raw materials was divided into different samples composition. Its composition determines the performances of the samples in density, porosity and mechanical properties.


There is no doubt concrete is most useful thing in construction industry but it has a negative impact also, just like a coin has two faces. Raw materials used in manufacturing of concrete affects the environment in one or the another negative way. Like manufacturing of cement produce carbon dioxide whereas the production of aggregates adds dust to the environment. Production of coarse aggregates also impact the geology of the area from they were extracted. A step taken in this direction is the use of waste products along with or in replacement of cement. Many of these materials are already in use, like silica fume, fly ash etc. In this study, plastic coarse aggregates were used in place of natural coarse aggregates. Plastic aggregates were produced by little processing of waste plastic. Plastic is the biggest threat to the environment, and it is affecting the environment rapidly. Some recent studies show that it can be used construction industry due to some of its properties like inert behavior, resistance to degradation etc. Also use of waste plastic can help in reducing plastic waste Various experiments were performed to test the mechanical properties of the concrete with plastic coarse aggregates. Concrete was prepared using plastic coarse aggregates in varying proportions of 0, 2.5, 5, 7.5 and 10%


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2657
Author(s):  
Miguel A. Salas ◽  
Heriberto Pérez-Acebo ◽  
Verónica Calderón ◽  
Hernán Gonzalo-Orden

Due to the considerable amount of waste plastics and polymers that are produced annually, the introduction of these waste products in construction materials is becoming a recurrent solution to recycle them. Among polymers, polyamide represents an important proportion of polymer waste. In this study, sustainable and lightweight mortars were designed and elaborated, substituting the aggregates by polyamide powder waste. Mortars were produced with various dosages of cement/aggregates, and the polyamide substitutions were 25, 50, 75, and 100% of the aggregates. The aim of this paper is to determine the density and the compressive strength of the manufactured mortars to observe the feasibility for being employed as masonry or rendering and plastering mortars. Results showed that with increasing polymer substitution, lower densities were achieved, ranging from 1850 to 790 kg/m3 in modified mortars. Mortars with densities below 1300 kg/m3 are cataloged as lightweight mortars. Furthermore, compressive strength also decreased with more polyamide substitution. Obtained values in recycled mortars were between 15.77 and 2.10 MPa, but the majority of the values (eight out of 12) were over 5 MPa. Additionally, an economic evaluation was performed, and it was observed that the use of waste polyamide implies an important cost reduction, apart from the advantage of not having to manage this waste material. Consequently, not only the mechanical properties of the new recycled materials were verified as well as its economic viability.


2017 ◽  
Vol 6 (2) ◽  
pp. 47 ◽  
Author(s):  
Henny Pratiwi

The use of suitable waste products as raw materials has become an interesting matter in composite industry nowadays due to the environmental issues. Volcanic ash is one of the waste materials containing a high number of silica. The aim of this study is to examine the morphological and mechanical properties of Mt. Kelud volcanic ash reinforced polyester and epoxy composites. The volcano ash was dried and sieved into 50 mesh then mixed with polyester or epoxy manually for 10 minutes. The ash added into the matrix was varied by 0%, 10%, 20%, 30% and 40% from matrix volume content. For epoxy matrix, the composite with 40 vol. % particles has the highest tensile strength. However, for the polyester/ash composites, the tensile strength continues to decrease with the addition of particles. There is a significant increasing of 47.04 % for polyester and 5.62 % for epoxy in impact strength when 40 vol. % of volcanic ash added into both polymers. The Scanning Electron Microscopy result shows that there is void and agglomeration contained in epoxy/ash composites and crack propagation along the surface of polyester/ash composites that could be the cause of the failure.


2018 ◽  
Vol 41 ◽  
pp. 02012 ◽  
Author(s):  
Mourad Samir ◽  
Faruz Alama ◽  
Paul Buysse ◽  
Tomas van Nylen ◽  
Oleg Ostanin

The main directions of mining and industrial wastes’ utilization are the production of building materials, their use in the construction industry without additional processing, and also the production of metals from metal-containing raw materials. It should be noted that current waste is preferable for the production of building materials, since they preserve the primary physical and mechanical properties and chemical composition and, moreover, can reach the consumer bypassing all other steps that are mandatory for waste consolidated (transportation, storage, etc.). For the production of building materials, not less than 30% of overburden and refinement tailings are suitable, almost all metallurgical and fuel slags, waste products of fertilizers and building materials. Even larger amounts of waste can be used for various laying and burial works (construction of road bases and dams, filling of worked out areas, leveling of the relief).


2018 ◽  
Vol 69 (5) ◽  
pp. 1272-1275 ◽  
Author(s):  
Camelia Tecu ◽  
Aurora Antoniac ◽  
Gultekin Goller ◽  
Mustafa Guven Gok ◽  
Marius Manole ◽  
...  

Bone reconstruction is a complex process which involves an osteoconductive matrix, osteoinductive signaling, osteogenic cells, vascularization and mechanical stability. Lately, to improve the healing of the bone defects and to accelerate the bone fusion and bone augmentation, bioceramic composite materials have been used as bone substitutes in the field of orthopedics and dentistry, as well as in cosmetic surgery. Of all types of bioceramics, the most used is hydroxyapatite, because of its similar properties to those of the human bone and better mechanical properties compared to b-tricalcium phosphate [1]. Currently, the most used raw materials sources for obtaining the hydroxyapatite are: bovine bone, seashells, corals, oyster shell, eggshells and human teeth. There are two common ways to obtain hydroxyapatite: synthetically and naturally. Generally, for the improvement of the mechanical properties and the structural one, hydroxyapatite is subjected to the sintering process. Considering the disadvantages of hydroxyapatite such as poor biodegradation rate, b-TCP has been developed, which has some disadvantages too, such as brittleness. For this reason, the aim of this study is to look into the effect of adding magnesium oxide on the sintering behavior, the structure and the mechanical properties of the hydroxyapatite-tricalcium phosphate composites.


2021 ◽  
pp. 002199832110370
Author(s):  
Tihomir Kovačević ◽  
Saša Brzić ◽  
Melina Kalagasidis Krušić ◽  
Jovica Nešić ◽  
Ljubica Radović ◽  
...  

Two types of polymer waste materials, poly(ethylene terephthalate) (PET) and polycarbonate based Colombian Resin (CR-39), were used for the designing of fully recycled composite materials. Waste PET was employed for the synthesis of thermoset unsaturated polyester resin (UPR), while CR-39 was used as reinforcement in the UPR matrix. Prior to mixing, CR-39 particles were subjected to oxidation and chemical activation using acids/base and ethanol amine, respectively. The effect of the modifier type and variable loading of the activated CR-39 particles on mechanical and dynamic-mechanical properties of the corresponding composites was investigated. The greatest improvement in the tensile and flexural strength of UPR resin was achieved with the composite containing 0.5 wt% of amine activated filler particles, 96.0% and 62.2%, respectively. The Arrhenius equation was used to calculate the activation energy for glass transition from dynamic mechanical properties measured at various frequencies. The activation energy of the main transition for UPR resin and composites were calculated to be 173 and 350 kJ·mol−1 indicating that reinforcement results in an increase in the energy barrier to macromolecules viscoelastic relaxation. In addition, erosion resistance was studied during exposure of samples to cavitation tests. According to the obtained results, these materials can be applied in construction and mining industry.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Pavlina Mateckova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

High-performance concrete (HPC) is subjected to wide attention in current research. Many research tasks are focused on laboratory testing of concrete mechanical properties with specific raw materials, where a mixture is prepared in a relatively small amount in ideal conditions. The wider utilization of HPC is connected, among other things, with its utilization in the construction industry. The paper presents two variants of HPC which were developed by modification of ordinary concrete used by a precast company for pretensioned bridge beams. The presented variants were produced in industrial conditions using common raw materials. Testing and comparison of basic mechanical properties are complemented with specialized tests of the resistance to chloride penetration. Tentative expenses for normal strength concrete (NSC) and HPC are compared. The research program was accomplished with a loading test of model experimental pretensioned beams with a length of 7 m made of ordinarily used concrete and one variant of HPC. The aim of the loading test was to determine the load–deformation diagrams and verify the design code load capacity calculation method. Overall, the article summarizes the possible benefits of using HPC compared to conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document