scholarly journals Analysis and Economic Evaluation of the Use of Recycled Polyamide Powder in Masonry Mortars

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2657
Author(s):  
Miguel A. Salas ◽  
Heriberto Pérez-Acebo ◽  
Verónica Calderón ◽  
Hernán Gonzalo-Orden

Due to the considerable amount of waste plastics and polymers that are produced annually, the introduction of these waste products in construction materials is becoming a recurrent solution to recycle them. Among polymers, polyamide represents an important proportion of polymer waste. In this study, sustainable and lightweight mortars were designed and elaborated, substituting the aggregates by polyamide powder waste. Mortars were produced with various dosages of cement/aggregates, and the polyamide substitutions were 25, 50, 75, and 100% of the aggregates. The aim of this paper is to determine the density and the compressive strength of the manufactured mortars to observe the feasibility for being employed as masonry or rendering and plastering mortars. Results showed that with increasing polymer substitution, lower densities were achieved, ranging from 1850 to 790 kg/m3 in modified mortars. Mortars with densities below 1300 kg/m3 are cataloged as lightweight mortars. Furthermore, compressive strength also decreased with more polyamide substitution. Obtained values in recycled mortars were between 15.77 and 2.10 MPa, but the majority of the values (eight out of 12) were over 5 MPa. Additionally, an economic evaluation was performed, and it was observed that the use of waste polyamide implies an important cost reduction, apart from the advantage of not having to manage this waste material. Consequently, not only the mechanical properties of the new recycled materials were verified as well as its economic viability.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Zhang ◽  
Bairu Lu ◽  
Yihong Wang ◽  
Zhijun Lei ◽  
Zhanshen Yang

According to the latest UN statistics, more than 2 billion people in the world still live in various forms of earthen buildings, including some in China. The variety of earth-based constructional materials is significant among different regions, with each region influencing the selection of local earth construction materials. In this study, earth materials from four regions of China were collected and sorted, with 10 samples from each source, and cube compressive strength tests were performed to analyze the composition and mechanical properties of the four materials, including northeast black earth, southeast red earth, northwest loess, and Xinjiang yellow sand earth. The results showed that significant differences existed in the composition of earth-based constructional materials from different regions, which have influence on the materials’ compressive strength. The order from large to small of compressive strengths was loess, black earth, yellow sandy earth, and red earth. Material load-displacement curves were influenced significantly by the plasticity index, but the overall failure processes of the various samples were basically the same.


2019 ◽  
pp. 205-214
Author(s):  
Ikumapayi C. M. ◽  
Adeniji A. A. ◽  
Obisesan A. A. ◽  
Odeyemi O. ◽  
Ajayi J. A.

Concrete is one of the reliable, durable, economical and acceptable construction materials among the building and construction stakeholders worldwide. Performance of concrete could be threatened especially reinforced concrete by some processes such as corrosion, sulfate attack among others. Corrosion of reinforcement in reinforced concrete can be induced by carbonation process. Even though carbonation initiates corrosion, it has been gathered that carbonation could still be of immense benefits to building and construction industries if its mechanism of operation is understudied. This research work has therefore investigated the effect of carbonation on some selected mechanical properties of concrete such as compressive strength, flexural strength, water absorption and weight changes. Concrete cubes and beams of M15 grade with 0.5 % water-cement ratio were prepared and subjected to accelerated carbonation. Their compressive strength, flexural strength, water absorption and weight changes were determined in accordance with the relevant standards. The outcomes show that carbonation improves all the mechanical properties investigated. The use of carbonation can be positively explored in reinforced concrete provided there is adequate nominal cover.


Author(s):  
I. Mandziuk ◽  
K. Prisyazhna

We offer the technology of synthesis of the basic foundations of lubricants from natural raw materials – animal and vegetable fats. The relevance and novelty of the research is to use the technology of recycling polymer waste. This allows adjusting the rheological, physical, mechanical properties of lubricants. We propose a method to estimating the propensity to oxidation of natural fats based rheometric measurements. We studied the efficiency of the various classes of industrial antioxidants.


2014 ◽  
Vol 980 ◽  
pp. 91-96
Author(s):  
O.A. Johnson ◽  
Napiah Madzlan ◽  
Ibrahim B. Kamaruddin

In the recent years there has been an intensification of policies on sustainable construction materials in the construction industry. This environmental policy has brought about development of various sustainable materials in which Petrovege blocks is one of the outstanding products. This paper investigates the effect of curing age on the compressive strength of the product. Block samples were prepared by adding 8%, 9%, 10%, 11%, 12%, and 13% liquid content of the mixture of vegetable oil and crude oil sludge as a binder after the optimum liquid content has been established. The specimens were cured at different period of time of 48hrs, 72hrs, 96hrs, and 120hrs. Mechanical properties of the products were evaluated. Compressive strength of Petrovege samples varies from 5.31 N/mm2to 18.88 N/mm2indicating that the compressive strength increases with increase in curing age, while decrease in porosity leads to increased compressive strength for the stipulated curing ages. All samples satisfied the minimum requirements in terms of compressive strength, in accordance with all available standards.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 180 ◽  
Author(s):  
Mohammed Jamal ◽  
Mohammad Zaky Noh ◽  
Shihab Al- Juboor ◽  
Mohd Haziman Bin Wan ◽  
Zakiyyu Ibrahim Takai

The demand of concrete have been increases on a daily bases which consume a lot of natural resource such as sand and gravel,  there is an immediate need for finding suitable alternative which can be used to replace sand partially with another materials with high proportion . Ceramic waste is one of the strongest research areas that include the activity of replacement in all the sides of construction materials. This research aims to improve the performance of concrete using ceramic waste, and demonstrate the performance of mechanical properties to the concrete with partial replacement of sand by using waste porcelain. For these, we analyzed the mechanical properties of the concrete such as compressive strength, split tensile and flexural strength, the specimen were measured based on 10% ,20% ,30% ,40%, and 50% weight ratio of replace sand with waste porcelain at different time under water for 7 days , 28 days , 60 days . The optimum consideration were given to mechanical properties of the concrete, at different amount of ceramic waste as sand.


2018 ◽  
Vol 1 (1) ◽  
pp. 4-9
Author(s):  
Renan Pícolo Salvador ◽  
Roberto Munhoz Bueno ◽  
Dimas Alan Strauss Rambo ◽  
Sandro Martini

Cement production is responsible for 5% of CO2 emissions worldwide. The concern about the pollution derived from the construction industry has brought attention to the need of developing more sustainable construction materials and processes. Admixtures based on nanometric graphene oxide have the potential to enhance mechanical properties and durability of cementitious composites. In this context, an experimental program was conducted to evaluate how the addition of graphene oxide may be used to reduce cement content in concretes, maintaining the same mechanical properties of conventional concretes (control matrices, with no graphene oxide additions). Kinetics of hydration of cement pastes was evaluated by isothermal calorimetry, phase evolution during hydration was determined by X-ray diffraction coupled with quantitative Rietveld analysis and mechanical properties were evaluated by compressive strength. Results indicate that graphene oxide additions provide a faster hydration rate until 24 h and generate a larger amount of C-S-H gel, increasing mechanical strength of the matrix. By the addition of graphene oxide dispersion (0.4% of solid content) at 0.02% by cement weight, cement content reductions of up to 15% may be achieved, maintaining the same compressive strength as the control matrices. From this research, a reduction in cement content to obtain more sustainable construction materials and processes may be achieved.


Author(s):  
Diksha Jain

Abstract: This research focuses on studying the effect of Mild Steel Scrap and Crusher Dust on the Properties of Concrete Mixes as a partial replacement of Sand. The trend of mixing several kinds of additional materials such as Glass powder, plastic, Quarry dust, Copper slag, Steel scrap, in building engineering is now growing. Consumption of Crusher dust and Mild steel scrap are one of the lively research area that include the effectiveness of replacement in all the aspects of construction materials. It is very significant to develop eco-friendly concrete from ceramic waste. This Research deals with the experimental study on the mechanical strength properties of M20 grade concrete with the partial replacement of fine aggregate by using crusher dust and mild Steel Scrap. In order to analyze the mechanical properties such as Compressive Strength, Spilt tensile strength, and Workability the samples were casted with mild steel scrap having constant proportion of 5% and crusher dust having 10%, 15% ,20% 25%, 30%, 35%, 40% partial replacement. In second category sand has been partially replaced by mild steel scrap proportion of 10%, 15%, 20%, 25%, 30%, 35% and crusher dust by 20%, 25%, 30% 35% at a different periods of curing 7 days, and 28 days. The optimal of percentage addition of Crusher dust and Mild steel scrap are analyzed considering the needs of mechanical properties of concrete. Keywords: Crusher Dust, Mild Steel Scrap, Compressive Strength, Spilt tensile Strength, Mechanical properties,


2012 ◽  
Vol 2 (6) ◽  
pp. 315-319 ◽  
Author(s):  
F. A. Olutoge ◽  
H. A. Quadri ◽  
O. S. Olafusi

Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA) is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA) as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete, at lower volume of replacement, will enhance the reduction of cement usage in concretes, thereby reducing the production cost. This research was carried out at the University of Ibadan, Ibadan, Nigeria.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiangzhou Liang ◽  
Yongsheng Ji

AbstractRed mud, a by-product of alumina production, has a great impact on the environment due to its high alkalinity. In this paper, two-part geopolymer mortar was synthesized by combining red mud and blast furnace slag (BFS) to obtain optimized compressive strength and flexural strength for construction materials. Geopolymer concrete was prepared with the cementitious material in the concrete replaced by geopolymer mortar. Mechanical properties, permeability and microscopic properties of geopolymer concrete were measured. The results showed that the compressive strength grade of concrete prepared with geopolymer concrete can reach 54.43 MPa indicating that the geopolymer concrete can be used as materials for load-bearing members in structures. Due to lower total porosity and better pore structure, the permeability resistance of geopolymer concrete was significantly better than ordinary concrete. Microscopic analysis indicated that a large amount of aluminosilicate reaction products was generated in a geopolymer by the reaction of OH− with the aluminosilicate components in red mud and BFS in a strongly alkaline environment. The surface [SiO4]4− and [AlO4]4− tetrahedrons form chemical bonds through dehydroxylation, which is the direct reason for their high strength and determines their excellent physical and chemical properties.


2021 ◽  
Vol 13 (7) ◽  
pp. 1289-1294
Author(s):  
Jin Kim ◽  
Young-Ho Kim ◽  
Jong-Young Lee ◽  
Jung-Geun Han

ABSTRACTThe modern society is a world made of concrete. Many buildings, ports, dams, and other infrastructure are made of concrete. Concrete is mainly composed of aggregate and cement. It is mixed with blended water and used after curing. This study used porous feldspar known to react well with cement to replace fine aggregate and reduce cement content. Although feldspar mortar reduced cement content by 5% (25%–>20%), the compressive strength increased 1.4 to 2.9 times compared to its counterpart, Ready-Mixed Mortar (RMM). Using Hydrogen Nano-Bubble Water (HNBW) as blended water, compressive strength was increased from 7% to a maximum of 23%. This proved that hydrogen nano-bubble water could promote cement hydrate creation and reaction. When hydrogen nano-bubble water was used as blended water, thermal conductivity decreased by a maximum of 30% compared to the use of plain water as blended water. Results of this study indicate that construction materials with improved thermal efficiency could be developed.


Sign in / Sign up

Export Citation Format

Share Document