RESEARCH OF THE TECHNOLOGICAL PROCESS OF SCREEN PRINTING ON TEXTILE AND KNITTING MATERIALS

Author(s):  
Dmytro Prybeha ◽  
Svytlana Smutko ◽  
Viktoriya Mitsa ◽  
Anastasia Khrushch

The aim of the research is to identify the differences in the process of screen printing on textile materials. The equipment, which is used in the process of screen printing on light industry materials, as well as the technological process itself, require the formulation of a number of tasks of analytical and experimental studies. Established that the main differences in the process of screen printing on light industry materials are the stability of materials to high temperatures, their hygroscopicity, adhesion properties of paints and the surface of the material, significant linear deformation, temperature shrinkage, operational features of clothing and footwear. Analysed the operations of drawing images by screen printing on light industry materials, as well as done the grouping of equipment for the realization of this process. As a result of consideration and structuring of information on operations of technological process the tasks of further analytical and experimental researches are formulated. The operations of the technological process of stencil printing on light industry materials derived as a result of theoretical and empirical studies are structured. The stages and methods of screen printing operations on light industry materials are described.

Author(s):  
О. П. Сумська ◽  
Ю. А. Фещук ◽  
О. А. Гібелінда ◽  
Н. В. Панченко

To determine the effect of nanosized organosilicon softeners on the indices of the technological properties of a knitted fabric, to assess the possibility of their improvement through the use of innovative finishing processing. Theoretical and experimental studies are based on the basic principles of textile materials science. In experimental studies, standardized methods and techniques were used, which are reflected in the laboratory by providing softening treatment for knitted fabrics. The sewing process was performed on a Juki DLL-8100e industrial sewing machine. The stitch frequency of the stitches was determined by the registration method. It is determined that the use of nanosized organosilicon softeners significantly affects the performance of the technological properties of a knitted fabric. It was found that the Kolosil nanosized organosilicon softener, which was used by the selection method at a concentration of 4% of the processed material, has a maximum effect on the total deformation and increases the proportion of the slowly inverse deformation component. It is shown that the use of softeners has a positive effect on the stability of the linear dimensions of a knitted fabric. It is proved that the final processing of knitted fabric with innovative nanosized organosilicon softeners can be considered a factor in reducing the technological complexity of garments. The scientific hypothesis has been experimentally confirmed in the use of nanosized organosilicon softeners to improve the indicators of the technological properties of a knitted fabric. It is shown that treatment with nanoscale softeners causes changes in the structure of fibers at the micro level, which are of paramount importance for the formation of technological properties of a knitted fabric. The research results can be used in the development of new materials with improved properties, in the design of clothing parts and in sewing knitted fabrics.


2021 ◽  
Vol 11 (8) ◽  
pp. 3444
Author(s):  
Sergey A. Lavrenko ◽  
Dmitriy I. Shishlyannikov

The authors focus on the process of potash ore production by a mechanized method. They show that currently there are no approved procedures for assessing the performance of heading-and-winning machines operating in the conditions of potash mines. This causes difficulties in determining the field of application of heading-and-winning machines, complicates the search for implicit technical solutions for the modernisation of existing models of mining units, prohibits real-time monitoring of the stability of stope-based technological processes and makes it difficult to assess the performance of the services concerning mining enterprises. The work represents an aggregate assessment of the performance of heading-and-winning machines for potash mines by determining complex indicators describing the technological and technical levels of organising the work in stopes. Such indicators are the coefficients of productivity and energy efficiency, respectively. Experimental studies have been carried out in the conditions of the potash mine of the Verkhnekamskoye potassium-magnesium salt deposit to assess the performance of the latest and most productive Ural-20R heading-and-winning machines manufactured in Russia. Using the above methodological approaches, this paper shows that the unsatisfactory technological performance of the studied machine is due to the low productivity of the mine district transport. The average productivity coefficient was 0.29. At the same time, high values of the energy efficiency coefficient show that the productivity of the machine is on par with design conditions.


2020 ◽  
Vol 992 ◽  
pp. 439-444
Author(s):  
I.V. Cherunova ◽  
S.S. Tashpulatov ◽  
S.V. Kurenova

In the article research results are presented, which aim to provide treated textile electrostatic properties study. In the article research results are presented, which aim to provide find out abilities of an anti-electrostatic treatment and binding agents for it in treatment of special textile materials and their dependance from modes of operating textile washing. Results of determine a composition and abilities of a functional impregnation; develop a method to study values of electrostatic field for tribocharging conditions of textile materialsare; experimental studies of electrostatic values of materials with functional treatment depending on operating washing modes also presented here. Study results allowed to establish efficiency of the proposed combination of anti-electrostatic active composition based on 5 % solution of dialkyldimethylammonium chloride with a binding agent with the effect to preserve the treatment in the material structure and content of which is 4 % in application of textile fabric with widely used fiber content (cotton 53 %, polyester + oil and water-proofing finish). Acrylic dispersion is stable film-forming component suitable in preserving anti-electrostatic treatment on the surface of a textile material. The research was made in Don State Technical University within the framework of State Assignment of the Ministry of education and science of Russia under the project 11.9194.2017/BCh.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.


1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


Author(s):  
І. О. Іванов ◽  
Н. П. Супрун ◽  
Ю. О. Ващенко

Investigation of the influence of the peculiarities of raw material composition and structure of traditional and innovative linen textile materials on their hygienic properties. Theoretical and experimental investigations are based on the main positions of textile materials science. In experimental studies, modern standardized methods for determining the hygienic properties of textile materials were used, as well as techniques specially developed taking into account the peculiarities of the operating conditions of underwear. The peculiarities of the operating conditions and the basic functions of hospital underwear were determined. The comparative analysis of hygienic properties of traditional and modern fabrics for underwear was carried out. Using the standardized and the developed methods, adapted to the peculiarities of the conditions of use of the products, the indicators characterizing the processes of water absorption of the materials were experimentally determined. On the basis of the obtained values of quality indicators, a comprehensive assessment of the ability of materials to transfer moisture and air, with the calculation of the arithmetic complex quality index was done. This allowed to determine the material that is optimal in properties, which provides thermophysiological comfort when operating hospital underwear. Using the developed methods, which take into account the specifics of the operating conditions, a comparative analysis of the hygienic properties of traditional and innovative materials for underwear was carried out. A new range of textile materials for underwear has been proposed, taking into account the peculiarities of the operational situation of consumption.


2021 ◽  
Vol 58 (4) ◽  
pp. 55-68
Author(s):  
F. Capligins ◽  
A. Litvinenko ◽  
A. Aboltins ◽  
E. Austrums ◽  
A. Rusins ◽  
...  

Abstract The paper presents a study of the chaotic jerk circuit (CJC) employment capabilities for digital communications. The concept of coherent chaos shift keying (CSK) communication system with controlled error feedback chaotic synchronization is proposed for a specific CJC in two modifications. The stability of chaotic synchronization between the two CJCs was evaluated in terms of voltage drop at the input of the slave circuit and the impact of channel noise using simulations and experimental studies.


2018 ◽  
Vol 13 (3) ◽  
pp. 90-95
Author(s):  
Роман Ли ◽  
Roman Li ◽  
Дмитрий Псарев ◽  
Dmitriy Psarev ◽  
Мария Киба ◽  
...  

Body parts are typical, most material-intensive and expensive parts. When repairing worn out hull details, the costs for repairing equipment are significantly reduced, in comparison with the manufacture of new ones, the consumption of metal, electricity, and environmental pollution is reduced. Unlike many other methods, the methods of restoring body parts with polymeric materials are technologically simple, do not require large energy inputs and high qualification of the personnel. Due to the polymer layer, the stresses in the contact zone of loaded bodies with the bearing raceways decrease and its durability increases, there is no fretting corrosion and the service life of the bearing and body part increases manyfold. The use of polymeric composites can significantly improve the efficiency of restoring body parts. This is due to increased thermal conductivity, thermal and heat resistance, lower cost of composites in comparison with non-filled polymers. A promising direction in improving the consumer properties of the material is the filling of the polymer matrix with nanoscale particles. The nanocomposite based on elastomer F-40 filled with aluminum and copper nanoparticles has been developed and thoroughly studied at the LSTU. The material is designed to restore the landing holes in the hull parts of the tractor equipment. The article presents the results of experimental studies and analysis of deformation-strength and adhesion properties of a nanocomposite, its optimal composition is justified. Comparative results of the study of heat resistance and thermal stability of the F-40 elastomer and a nanocomposite based on are presented. It is shown that the nanocomposite has higher consumer properties than the F-40 elastomer: the strength and endurance are increased to 1.3 times, the heat resistance is up to 123C, the aging coefficients are 1.8 times higher in strength, 1.4 times in deformation.


Author(s):  
Н. А. Страхова ◽  
П. С. Цамаева ◽  
А. А. Эльмурзаев

Статья посвящена анализу и изучению различных способов получения нефтяных битумов и улучшения адгезионных свойств в различных минеральных материалах. На примере Астраханского газоперерабатывающего завода показана эффективность добавления присадок - азот-, серосодержащих веществ, элементной серы и др. для улучшения адгезионных свойств битумов к минеральным материалам. Проведен анализ воздействия перепада температур в летнее и зимнее время на вяжущие свойства битумов. Рассмотрен способ предварительной отгонки летучих компонентов из нефтей, что приводит к уменьшению содержания парафинонафтеновых углеводородов и улучшению качества получаемых битумов. В статье также приведены результаты экспериментальных исследований влияния окисления кислородом воздуха, повышения температуры процесса на пластичность битумов. Эффективность окисления битумов зависит от величины поверхности контакта между жидкой и газовой фазой. Ускорение процесса окисления достигается в 6-7 раз при хорошем перемешивании реагирующих фаз. The article also presents the results of experimental studies of the effect of oxidation with atmospheric oxygen, an increase in the process temperature on the plasticity of bitumen. The efficiency of bitumen oxidation depends on the size of the contact surface between the liquid and gas phases. Acceleration of the oxidation process is achieved 6-7 times with good mixing of the reacting phases.The article is devoted to the analysis and study of various methods of obtaining petroleum bitumen and improving the adhesion properties in various mineral materials. Using the example of the Astrakhan gas processing plant, the effectiveness of the addition of additives - nitrogen-, sulfur-containing substances, elemental sulfur, etc. - to improve the adhesion properties of bitumen to mineral materials is shown. The analysis of the effect of temperature differences in summer and winter on the binding properties of bitumen is carried out. A method for preliminary stripping of volatile components from oils is considered, which leads to a decrease in the content of paraffin-naphthenic hydrocarbons and an improvement in the quality of the obtained bitumen.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


Sign in / Sign up

Export Citation Format

Share Document