Non-Destructive Investigation of Dispersion, Bonding, and Thermal Properties of Emerging Polymer Nanocomposites Using Close-Up Lens Assisted Infrared Thermography

MRS Advances ◽  
2020 ◽  
Vol 5 (14-15) ◽  
pp. 735-742
Author(s):  
Ali Ashraf ◽  
Nikhil Jani ◽  
Francis Farmer ◽  
Jennifer K. Lynch-Branzoi

AbstractPolymer nanocomposites possess unique sets of properties that make them suitable for different applications, including structural and flame-retardant material, electromagnetic wave reflector, sensors, thin film transistor, flexible display, and many more. The properties of these nanocomposite are dependent on nanofiller dispersion and bonding with polymer matrix (i.e. particle-matrix interaction). Thermography is a non-destructive method that may be used to gain insight into dispersion and particle-matrix interaction. Infrared (IR) radiation emitted from these nanomaterial polymer composite depends on the emissivity of the individual components. In addition, during flash heating and cooling, different thermal conductivity of components in the nanocomposite can influence pixel intensity differently in the IR image or video being captured. We have used an economical mid wavelength IR camera Fluke RSE600 equipped with a close-up macro lens and algorithm based on MATLAB image processing toolbox to analyse dispersion, voids and thermal diffusivity of patented graphene polymer nanocomposite materials (G-PMC) in micro-scale. These G-PMCs can act as a standard material to determine the potential of our IR thermography technique due to their homogeneity and lack of impurity due to unique fabrication process. Thermal diffusivity and dispersion of nanoparticles in our G-PMCs was estimated after irradiation with a xenon flash lamp by spatially mapping transient IR radiations from different G-PMCs using the Fluke RSE600 thermal imager. Results from thermography experiments were compared with scanning electron microscope (SEM) and Raman spectroscopy results. Micro-scale thermography was able to detect millimetre scale thermal diffusivity variation in the injection molded G-PMC samples and relate it to change in dispersion of nanofillers, unlike SEM and Raman, where micro-scale measurements could not determine the reason behind millimetre scale property variation. We believe this low cost, fast, micro-scale, non-destructive technique will provide valuable insight into functional polymer nanocomposite fabrication and corresponding electrical and thermal properties.

Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Oluranti Agboola ◽  
Ojo Sunday Isaac Fayomi ◽  
Ayoola Ayodeji ◽  
Augustine Omoniyi Ayeni ◽  
Edith E. Alagbe ◽  
...  

Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1003
Author(s):  
Christoph Tuschl ◽  
Beate Oswald-Tranta ◽  
Sven Eck

Inductive thermography is a non-destructive testing method, whereby the specimen is slightly heated with a short heating pulse (0.1–1 s) and the temperature change on the surface is recorded with an infrared (IR) camera. Eddy current is induced by means of high frequency (HF) magnetic field in the surface ‘skin’ of the specimen. Since surface cracks disturb the eddy current distribution and the heat diffusion, they become visible in the IR images. Head checks and squats are specific types of damage in railway rails related to rolling contact fatigue (RCF). Inductive thermography can be excellently used to detect head checks and squats on rails, and the method is also applicable for characterizing individual cracks as well as crack networks. Several rail pieces with head checks, with artificial electrical discharge-machining (EDM)-cuts and with a squat defect were inspected using inductive thermography. Aiming towards rail inspection of the track, 1 m long rail pieces were inspected in two different ways: first via a ‘stop-and-go’ technique, through which their subsequent images are merged together into a panorama image, and secondly via scanning during a continuous movement of the rail. The advantages and disadvantages of both methods are compared and analyzed. Special image processing tools were developed to automatically fully characterize the rail defects (average crack angle, distance between cracks and average crack length) in the recorded IR images. Additionally, finite element simulations were used to investigate the effect of the measurement setup and of the crack parameters, in order to optimize the experiments.


2015 ◽  
Vol 39 (3) ◽  
pp. 2052-2059 ◽  
Author(s):  
Dongfang Wang ◽  
Wendong Liu ◽  
Fengling Bian ◽  
Wei Yu

Pd supported on magnetic polymer nanocomposites serves as an efficient and recyclable catalyst for the water-phase Heck and Suzuki reactions.


1999 ◽  
Vol 607 ◽  
Author(s):  
A. Saher Helmy ◽  
A.C. Bryce ◽  
C.N. Ironside ◽  
J.S. Aitchison ◽  
J.H. Marsh ◽  
...  

AbstractIn this paper we shall discuss techniques for accurate, non-destructive, optical characterisation of structures fabricated using quantum well intermixing (QWI). Spatially resolved photoluminescence and Raman spectroscopy were used to characterise the lateral bandgap profiles produced by impurity free vacancy disordering (IFVD) technology. Different features were used to examine the spatial resolution of the intermixing process. Features include 1:1 gratings as well as isolated stripes. From the measurements, the spatial selectivity of IFVD could be identified, and was found to be ∼4.5 μm, in contrast with the spatial resolution of the process of sputtering induced intermixing, which was found to be ∼2.5 μm. In addition, PL measurements on 1:1 gratings fabricated using IFVD show almost complete suppression of intermixing dielectric cap gratings with periods less than 10 microns. Finally, some insight into the limitations and merits of PL and Raman for the precision characterisation of QWI will be presented.


1993 ◽  
Vol 309 ◽  
Author(s):  
Seshadri Ramaswami

AbstractA laser based non-destructive technique has been used to study the morphology of sputterdeposited aluminum alloy films. The data emanating from the Therma-wave Imager that makes use of this principle, has been correlated with reflectivity, grain size and micro-roughness of the film. In addition, through the use of a case study, this paper demonstrates the utility of this application as an in-line monitor in an integrated circuit fabrication line.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Sign in / Sign up

Export Citation Format

Share Document