Phase and lattice parameter relationships in rapidly solidified and heat-treated (Mn0.53Al0.47)100−xCx pseudo-binary alloys

1992 ◽  
Vol 7 (7) ◽  
pp. 1690-1695 ◽  
Author(s):  
C.T. Lee ◽  
K.H. Han ◽  
I.H. Kook ◽  
W.K. Choo

The phase constitution and the lattice parameter relationships in the rapidly solidified and heat-treated (Mn0.53Al0.47)100−xCx pseudo-binary alloys (x = 0–6) have been investigated by means of x-ray diffraction and transmission electron microscopy. The melt-spun alloys contained a single ∊ phase (cph) with 0.63–4.0 at. % C, and below and beyond this carbon composition range small traces of γ2-MnAl and Al4C3 compounds were formed, respectively. The heat treatment of the melt-spun alloys at 823 K produced a single τ phase (ordered bct, CuAu type I, L10) with 0.63–3.6 at.% C. The c lattice parameter of the ∊ unit cell was observed to increase pronouncedly with the carbon content whereas that of the a-axis revealed no apparent change; the corresponding increase of the unit cell volume was taken to indicate an interstitial dissolution of the carbon atoms in the ∊ lattice. On the other hand, for the τ phase, the c lattice parameter increased markedly with the carbon content while the a parameter decreased slightly, so that a large increase of c/a ratio was produced. The lattice parameter data for the τ phase thus indicated an increase of the unit cell volume with the carbon content, providing new evidence that the carbon atoms dissolve interstitially in the bct lattice. In addition, it was deduced that the higher c/a ratio with increasing carbon content may arise from a preferential site occupation of the carbon atoms at a specific type of octahedral interstitial site lying in the manganese atom layers.

Author(s):  
Marion C. Schäfer ◽  
Svilen Bobev

Studies of the K–Ba–Ga–Sn system produced the clathrate compounds K0.8(2)Ba15.2(2)Ga31.0(5)Sn105.0(5)[a= 17.0178 (4) Å], K4.3(3)Ba11.7(3)Ga27.4(4)Sn108.6(4)[a= 17.0709 (6) Å] and K12.9(2)Ba3.1(2)Ga19.5(4)Sn116.5(4)[a= 17.1946 (8) Å], with the type-II structure (cubic, space groupFd\overline{3}m), and K7.7(1)Ba0.3(1)Ga8.3(4)Sn37.7(4)[a= 11.9447 (4) Å], with the type-I structure (cubic, space groupPm\overline{3}n). For the type-II structures, only the smaller (Ga,Sn)24pentagonal dodecahedral cages are filled, while the (Ga,Sn)28hexakaidecahedral cages remain empty. The unit-cell volume is directly correlated with the K:Ba ratio, since an increasing amount of monovalent K occupying the cages causes a decreasing substitution of the smaller Ga in the framework. All three formulae have an electron count that is in good agreement with the Zintl–Klemm rules. For the type-I compound, all framework sites are occupied by a mixture of Ga and Sn atoms, with Ga showing a preference for Wyckoff site 6c. The (Ga,Sn)20pentagonal dodecahedral cages are occupied by statistically disordered K and Ba atoms, while the (Ga,Sn)24tetrakaidecahedral cages encapsulate only K atoms. Large anisotropic displacement parameters for K in the latter cages suggest an off-centering of the guest atoms.


1988 ◽  
Vol 02 (03n04) ◽  
pp. 641-650
Author(s):  
G.C. CHE ◽  
S.S. XIE ◽  
J.K. LIANG ◽  
K.S. LI ◽  
D.N. ZHENG ◽  
...  

In YBa 2 Cu 3 O 7−x, the more the oxygen content is the higher is the Tc, the smaller is the lattice parameter c and the unit cell volume V. But in LaBa 2 Cu 3 O 7+x the less the oxygen content is, the higher is the Tc, the larger are c and V. These may be due to oxygen content being less than 7.0 in YBa 2 Cu 3 O 7−x and more than 7.0 in LaBa 2 Cu 3 O 7+x. These results give some informations regarding superconducting mechanism and show that the one-dimensional chain plays an important role.


2022 ◽  
Vol 905 ◽  
pp. 91-95
Author(s):  
Fei Wang ◽  
Hui Hui Chen ◽  
Shi Wei Zhang

A series of luminescence phosphors M0.955Al2 –xGaxSi2O8∶Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) were prepared via solid-state reaction in weak reductive atmosphere. The lattice positions were discussed. It was found that when Ga3+ entered MAl2Si2O8 lattice and substituted Al3+, complete solid solutions formed. The lattice parameters (a, b, c) and unit cell volume of phosphors M 0.955Al2 –xGaxSi2O8: Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) increased linearly, the lattice parameters (α, β,γ) of Ca0.955Al2–xGaxSi2O8∶Eu2+(CAS) decreased linearly and the lattice parameter β of Sr0.955Al2–xGaxSi2O8∶Eu2+(SAS) and Ba0.955Al2–xGaxSi2O8∶Eu2+(BAS) increased linearly as Ga3+ content increased.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 221-223 ◽  
Author(s):  
Y. H. LIU ◽  
G. C. CHE ◽  
K. Q. LI ◽  
Z. X. ZHAO ◽  
Z. Q. KOU ◽  
...  

Systematic studies of x-ray diffraction(XRD), superconductivity and Mössbauer effect on Fe x Cu 1-x Ba 2 YCu 2 O 7+y ( x =0.00~0.70) superconductors synthesized by high pressure (HP) were summarized. All the HP-samples have tetragonal structure, smaller lattice parameter c and unit-cell volume than the AM-samples (synthesized by ambient pressure). The HP-samples have higher oxygen content than the AM-samples. Moreover, for the HP-sample with x =0.5, all of the Fe located in the CuO x chains have fivefold-oxygen coordination.


2021 ◽  
Vol 48 (9) ◽  
Author(s):  
G. Diego Gatta ◽  
Francesco Pagliaro ◽  
Paolo Lotti ◽  
Alessandro Guastoni ◽  
Laura Cañadillas-Delgado ◽  
...  

AbstractThe thermal behaviour of a natural allanite-(Ce) has been investigated up to 1073 K (at room pressure) by means of in situ synchrotron powder X-ray diffraction and single-crystal neutron diffraction. Allanite preserves its crystallinity up to 1073 K. However, up to 700 K, the thermal behaviour along the three principal crystallographic axes, of the monoclinic β angle and of the unit-cell volume follow monotonically increasing trends, which are almost linear. At T > 700–800 K, a drastic change takes place: an inversion of the trend is observed along the a and b axes (more pronounced along b) and for the monoclinic β angle; in contrast, an anomalous increase of the expansion is observed along the c axis, which controls the positive trend experienced by the unit-cell volume at T > 700–800 K. Data collected back to room T, after the HT experiments, show unit-cell parameters significantly different with respect to those previously measured at 293 K: allanite responds with an ideal elastic behaviour up to 700 K, and at T > 700–800 K its behaviour deviates from the elasticity field. The thermo-elastic behaviour up to 700 K was modelled with a modified Holland–Powell EoS; for the unit-cell volume, we obtained the following parameters: VT0 = 467.33(6) Å3 and αT0(V) = 2.8(3) × 10–5 K−1. The thermal anisotropy, derived on the basis of the axial expansion along the three main crystallographic directions, is the following: αT0(a):αT0(b):αT0(c) = 1.08:1:1.36. The T-induced mechanisms, at the atomic scale, are described on the basis of the neutron structure refinements at different temperatures. Evidence of dehydroxylation effect at T ≥ 848 K are reported. A comparison between the thermal behaviour of allanite, epidote and clinozoisite is carried out.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Jiba N. Dahal ◽  
Kalangala Sikkanther Syed Ali ◽  
Sanjay R. Mishra

Intermetallic compounds of Dy2Fe16Ga1−xNbx (x = 0.0 to 1.00) were synthesized by arc melting. Samples were investigated for structural, magnetic, and hyperfine properties using X-ray diffraction, vibration sample magnetometer, and Mossbauer spectrometer, respectively. The Rietveld analysis of room temperature X-ray diffraction data shows that all the samples were crystallized in Th2Fe17 structure. The unit cell volume of alloys increased linearly with an increase in Nb content. The maximum Curie temperature Tc ~523 K for x = 0.6 sample is higher than Tc = 153 K of Dy2Fe17. The saturation magnetization decreased linearly with increasing Nb content from 61.57 emu/g for x = 0.0 to 42.46 emu/g for x = 1.0. The Mössbauer spectra and Rietveld analysis showed a small amount of DyFe3 and NbFe2 secondary phases at x = 1.0. The hyperfine field of Dy2Fe16Ga1−xNbx decreased while the isomer shift values increased with the Nb content. The observed increase in isomer shift may have resulted from the decrease in s electron density due to the unit cell volume expansion. The substantial increase in Tc of thus prepared intermetallic compounds is expected to have implications in magnets used for high-temperature applications.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1746-C1746
Author(s):  
Kazuo Kurihara ◽  
Katsuaki Tomoyori ◽  
Taro Tamada ◽  
Ryota Kuroki

The structural information of hydrogen atoms and hydration waters obtained by neutron protein crystallography is expected to contribute to elucidation of protein function and its improvement. However, many proteins, especially membrane proteins and protein complexes, have larger molecular weight and then unit cells of their crystals have larger volume, which is out of range of measurable unit cell volume for conventional diffractometers. Therefore, our group had designed the diffractometer which can cover such crystals with large unit cell volume (target lattice length: 250 Å). This diffractometer is dedicated for protein single crystals and has been proposed to be installed at J-PARC (Japan Proton Accelerator Research Complex). Larger unit cell volume causes a problem to separate spots closer to each other in spatial as well as time dimension in diffraction images. Therefore, our proposed diffractometer adopts longer camera distance (L2 = 800mm) and selects decoupled hydrogen moderator as neutron source which has shorter pulse width. Under the conditions that L1 is 33.5m, beam divergence 0.40and crystal edge size 2mm, this diffractometer is estimated to be able to resolves spots diffracted from crystals with a lattice length of 220 Å in each axis at d-space of 2.0 Å. In order to cover large neutron detecting area due to long camera distance, novel large-area detector (larger than 300mm × 300mm) with a spatial resolution of better than 2.5mm is under development. More than 40 these detectors plan to be installed, providing the total solid angle coverage of larger than 33%. For neutron guide, ellipsoidal supermirror is considered to be adopted to increase neutron flux at the sample position. The final gain factor of this diffractometer is estimated to be about 20 or larger as compared with BIX-3/4 diffractometers operated in the research reactor JRR-3 at JAEA (Japan Atomic Energy Agency) [1,2].


Sign in / Sign up

Export Citation Format

Share Document