The solidification of large sections in ceramic injection molding: Part II. Modulated pressure molding

1993 ◽  
Vol 8 (2) ◽  
pp. 345-351 ◽  
Author(s):  
T. Zhang ◽  
J.R.G. Evans

Cylindrical moldings of 20 and 40 mm diameter were injection molded with the application of modulated hold pressure using a well-characterized alumina-polypropylene suspension. The effect of frequency on sprue solidification was explored. For the smaller moldings, very little extension to sprue solidification time was obtained with pressures up to 140 MPa, and this is attributed to the low reciprocating volume flow. For the larger moldings, pressures of 98 MPa were sufficient to produce moldings with neither voids nor cracks, and the sprue solidification time corresponded to the time needed for solidification of the molding. The use of higher pressures resulted in internal residual stresses which were qualitatively detected by the defomation on annealing of polished diametral sections.

1991 ◽  
Vol 249 ◽  
Author(s):  
Sophia R. Su

ABSTRACTBinder design is an important issue in ceramic injection molding technology. The binder decomposition mechanism, which involves thermodynamics, kinetics, as well as heat and mass transfer, controls the binder removal process. This process, in turn, is governed by the thermal and physical characteristics of the organic waxes used, and is the most critical step in injection molding ceramics. In this paper, we present the binder design philosophy and the method of binder selection. A systematic binder removal study focusing on heating rate, setter powder, and sublimable materials was carried out with the selected compositions. As a result of this study, we concluded that the fluid wicking controls the binder removal at the molten temperature of the binder, and the diffusion and permeation-controlled mechanism dominate at the decomposition temperature range of the binder. With the right binder selection, it is feasible to produce internal and external crack-free large cross-section injection-molded ceramic parts.


2021 ◽  
Vol 11 (15) ◽  
pp. 6946
Author(s):  
Bartłomiej Podsiadły ◽  
Andrzej Skalski ◽  
Wiktor Rozpiórski ◽  
Marcin Słoma

In this paper, we are focusing on comparing results obtained for polymer elements manufactured with injection molding and additive manufacturing techniques. The analysis was performed for fused deposition modeling (FDM) and single screw injection molding with regards to the standards used in thermoplastics processing technology. We argue that the cross-section structure of the sample obtained via FDM is the key factor in the fabrication of high-strength components and that the dimensions of the samples have a strong influence on the mechanical properties. Large cross-section samples, 4 × 10 mm2, with three perimeter layers and 50% infill, have lower mechanical strength than injection molded reference samples—less than 60% of the strength. However, if we reduce the cross-section dimensions down to 2 × 4 mm2, the samples will be more durable, reaching up to 110% of the tensile strength observed for the injection molded samples. In the case of large cross-section samples, strength increases with the number of contour layers, leading to an increase of up to 97% of the tensile strength value for 11 perimeter layer samples. The mechanical strength of the printed components can also be improved by using lower values of the thickness of the deposited layers.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2092
Author(s):  
Xiansong He ◽  
Wangqing Wu

This paper was aimed at finding out the solution to the problem of insufficient dimensional accuracy caused by non-linear shrinkage deformation during injection molding of small module plastic gears. A practical numerical approach was proposed to characterize the non-linear shrinkage and optimize the dimensional deviation of the small module plastic gears. Specifically, Moldflow analysis was applied to visually simulate the shrinkage process of small module plastic gears during injection molding. A 3D shrinkage gear model was obtained and exported to compare with the designed gear model. After analyzing the non-linear shrinkage characteristics, the dimensional deviation of the addendum circle diameter and root circle diameter was investigated by orthogonal experiments. In the end, a high-speed cooling concept for the mold plate and the gear cavity was proposed to optimize the dimensional deviation. It was confirmed that the cooling rate is the most influential factor on the non-linear shrinkage of the injection-molded small module plastic gears. The dimensional deviation of the addendum circle diameter and the root circle diameter can be reduced by 22.79% and 22.99% with the proposed high-speed cooling concept, respectively.


2001 ◽  
Vol 2 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Young Il Kwon ◽  
Tae Jin Kang ◽  
Kwansoo Chung ◽  
Jae Ryoun Youn

2016 ◽  
Vol 13 (5) ◽  
pp. 838-843 ◽  
Author(s):  
Zhao Zhang ◽  
Yujun Zhang ◽  
Hongyu Gong ◽  
Xue Guo ◽  
Yubai Zhang ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Artur Kościuszko ◽  
Dawid Marciniak ◽  
Dariusz Sykutera

Dimensions of the injection-molded semi-crystalline materials (polymeric products) decrease with the time that elapses from their formation. The post-molding shrinkage is an effect of secondary crystallization; the increase in the degree of polymer crystallinity leads to an increase in stiffness and decrease in impact strength of the polymer material. The aim of this study was to assess the changes in the values of post-molding shrinkage of polypropylene produced by injection molding at two different temperatures of the mold (20 °C and 80 °C), and conditioned for 504 h at 23 °C. Subsequently, the samples were annealed for 24 h at 140 °C in order to conduct their accelerated aging. The results of shrinkage tests were related to the changes of mechanical properties that accompany the secondary crystallization. The degree of crystallinity of the conditioned samples was determined by means of density measurements and differential scanning calorimetry. It was found that the changes in the length of the moldings that took place after removal from the injection mold were accompanied by an increase of 20% in the modulus of elasticity, regardless of the conditions under which the samples were made. The differences in the shrinkage and mechanical properties of the samples resulting from mold temperature, as determined by tensile test, were removed by annealing. However, the samples made at two different injection mold temperature values still significantly differed in impact strength, the values of which were clearly higher for the annealed samples compared to the results determined for the samples immediately after the injection molding.


2015 ◽  
Vol 752-753 ◽  
pp. 308-311
Author(s):  
Adam Skrobak ◽  
Michal Stanek ◽  
David Manas ◽  
Martin Ovsik ◽  
Vojtech Senkerik ◽  
...  

The aim of this article is to demonstrate and asses to what extent there is an impact on the mechanical properties of a standardized testing sample made of rubber compound based on synthetic rubber EPDM and produced by injection molding in comparison with a sample produced by classic preparation (cutting off a compression molded plate) according to the standard ISO 23529.


2018 ◽  
Vol 62 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Dániel Török ◽  
József Gábor Kovács

In all fields of industry it is important to produce parts with good quality. Injection molded parts usually have to meet strict requirements technically and aesthetically. The aim of the measurements presented in our paper is to investigate the aesthetic appearance, such as surface color homogeneity, of injection molded parts. It depends on several factors, the raw material, the colorants, the injection molding machine and the processing parameters. In this project we investigated the effects of the injection molding machine on surface color homogeneity. We focused on injection molding screw tips and investigated five screw tips with different geometries. We produced flat specimens colored with a masterbatch and investigated color homogeneity. To evaluate the color homogeneity of the specimens, we used digital image analysis software developed by us. After that we measured the plastication rate and the melt temperature of the polymer melt because mixing depends on these factors. Our results showed that the screw tips (dynamic mixers) can improve surface color homogeneity but they cause an increase in melt temperature and a decrease in the plastication rate.


Sign in / Sign up

Export Citation Format

Share Document