Tungsten nitride thin films prepared by MOCVD

1993 ◽  
Vol 8 (6) ◽  
pp. 1353-1360 ◽  
Author(s):  
Hsin-Tien Chiu ◽  
Shiow-Huey Chuang

Polycrystalline tungsten nitride thin films were grown by low pressure metallo-organic chemical vapor deposition (MOCVD) using (tBuN)2W(NHtBu)2 as the single-source precursor. Deposition of uniform thin films on glass and silicon substrates was carried out at temperatures 723–923 K in a cold-wall reactor, while the precursor was vaporized at 333–363 K. The growth rates were 2–10 nm/min depending on the condition employed. Bulk elemental composition of the thin films, studied by wavelength dispersive spectroscopy (WDS), is best described as WNx (x = 0.7–1.8). The N/W ratio decreased with increasing temperature of deposition. X-ray diffraction (XRD) studies showed that the films have cubic structures with the lattice parameter a = 0.414–0.418 nm. The lattice parameter decreased with decreasing N/W ratio. Stoichiometric WN thin films showed an average lattice parameter a of 0.4154 nm. X-ray photoelectron spectroscopy (XPS) showed that binding energies of the W4f7/2, W4f5/2, and N1s electrons were 33.0, 35.0, and 397.3 eV, respectively. Elemental distribution within the films, studied by secondary ion mass spectroscopy (SIMS) and Auger spectroscopy depth profilings, was uniform. The SIMS depth profiling also indicated that C and O concentrations were low in the film. Volatile products trapped at 77 K were analyzed by gas chromatography–mass spectroscopy (GC–MS) and nuclear magnetic resonance (NMR). Isobutylene, acetonitrile, hydrogen cyanide, and ammonia were detected in the condensable mixtures. Possible reaction pathways were proposed to speculate the origin of these molecules.

1991 ◽  
Vol 250 ◽  
Author(s):  
Hsin-Tien Chiu ◽  
Shiow-Huey Chuang

AbstractThe possibility of growing tungsten nitride thin films from (tBuN)2W(NHtBu)2, a single-source molecular precursor with two nitrogen to tungsten double bonds, by low pressure chemical vapor deposition (LPCVD) was investigated. Deposition of thin films on silicon and glass substrates was carried out at temperatures 500 – 650 °C in a cold-wall reactor while the precursor was vaporized at 60 – 100 °C. Elemental composition of the thin films, studied by wavelength dispersive spectroscopy (WDS), is best described as WNx (x = 0.8 – 1.8). Elemental distribution within the films, studied by Auger depth profiling, is uniform. X-ray diffraction (XRD) studies show that the films have a cubic structure with a lattice parameter a = 4.14 – 4.18 Å. A stoichiometric WN thin film has a lattice parameter a equal to 4.154 Å. Volatile products, trapped at −196°C, were analyzed by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). Isobutylene, acetonitrile, hydrogen cyanide and ammonia were detected in the condensable mixtures.


Author(s):  
Sahadeb Ghosh ◽  
Mangala Nand ◽  
Rajiv Kamparath ◽  
Mukul Gupta ◽  
Devdatta M Phase ◽  
...  

Abstract Oriented thin films of β-(Ga1-xFex)2O3 have been deposited by RF magnetron sputtering on c-Al2O3 and GaN substrates. The itinerant character of Fe 3d states forming the top of the valence band (VB) of Fe substituted of β-Ga2O3 thin films has been determined from resonant photoelectron spectroscopy (RPES). Further, admixture of itinerant and localized character of these Fe 3d sates is obtained for larger binding energies i.e deeper of VB. The bottom of the conduction band (CB) for β-(Ga1-xFex)2O3 is also found to be strongly hybridized states involving Fe 3d and O 2p states as compared to that of Ga 4s in pristine β-Ga2O3. This suggests that β-Ga2O3 transforms from band like system to a charge transfer system with Fe substitution. Furthermore, the bandgap red shits with Fe composition, which has been found to be primarily related to the shift of the CB edge.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 345 ◽  
Author(s):  
F. Chale-Lara ◽  
M. Zapata-Torres ◽  
F. Caballero-Briones ◽  
W. De la Cruz ◽  
N. Cruz Gonzalez ◽  
...  

We report the synthesis of AlN hexagonal thin films by pulsed laser ablation, using Al target in nitrogen ambient over natively-oxidized Si (111) at 600°C. Composition and chemical state were determined by X-ray photoelectron spectroscopy (XPS); while structural properties were investigated using X-ray diffraction (XRD). High-resolution XPS spectra present a gradual shift to higher binding energies on the Al2ppeak when nitrogen pressure is incremented, indicating the formation of the AlN compound. At 30 mTorr nitrogen pressure, theAl2p peak corresponds to AlN, located at 73.1 eV, and the XRD pattern shows a hexagonal phase of AlN. The successful formation of the AlN compound is corroborated by UV-Vis reflectivity measurements.


1991 ◽  
Vol 250 ◽  
Author(s):  
Charles M. Truong ◽  
José A. Rodriguez ◽  
Ming Cheng Wu ◽  
D. W. Goodman

AbstractThe coadsorption and reaction of diborane with ammonia and with hydrazine on Ru(0001) have been studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption mass spectroscopy (TDS). Diborane is found to decompose to atomic boron and hydrogen upon adsorption at T>200K. Multilayers of diborane and ammonia, deposited at 90K on Ru(0001), react when annealed to 600K. The XPS results indicate that boron-nitrogen adlayers can be formed by this reaction. These boron-nitrogen films are boron-rich and.decompose at temperatures higher than 1100K. Our TDS studies reveal that hydrazine decomposes extensively to NH3, N2, N and H on Ru(0001). Due to its higher reactivity, boron-nitrogen films of B/N stoichiometric ratio near unity are obtained when hydrazine is used rather than ammonia. In our studies, these films were formed by either simultaneously dosing B2H6 and N2H4 at 450K or by coadsorption of the reactants at 90K and subsequent annealing to 450K. These studies have shown that diborane and hydrazine can be successfully used as molecular precursors in the low temperature deposition of boron nitride thin-films.


1995 ◽  
Vol 10 (9) ◽  
pp. 2257-2259 ◽  
Author(s):  
Hsin-Tien Chiu ◽  
Ching-Shing Shie ◽  
Shiow-Huey Chuang

Ge(SiMe3)4 was used as a single-source precursor to deposit thin films of alloys of germanium, silicon, and carbon, Si1−x-yGexCy, by low-pressure chemical vapor deposition on silicon substrates at temperatures 873-973 K. X-ray diffraction studies indicated that the films grown above 898 K were cubic phase (a = 0.441–0.442 nm). Infrared spectra of the films showed a major absorption near 783 cm−1. X-ray photoelectron spectra of a typical thin film showed binding energies of Ge3d, Si2p, and C1s electrons at 30.0, 100.6, and 283.2 eV, respectively. As determined by wavelength dispersive spectroscopy, x was 0.07–0.15 and y was 0.43–0.50, indicating that the films contained 7–15% Ge, 38–43% Si, and 43–50% C. At 973 K, the C/(Si + Ge) ratio was 1. Based on these data, the films deposited above 898 K have a structure of β-SiC with Ge atoms replacing some Si atoms in the lattice.


Silicon incorporated carbon nano tube has been synthesized by radio frequency plasma enhanced chemical vapor deposition technique with acetylene gas. Tetraethyl orthosilicate solution was used for the synthesis of silicon incorporation in the CNT thin films. Energy dispersive X-ray analysis shows that the Si atomic percentage in the CNT thin films varied from 0 % to 3.82 %. The different chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy spectra. In the XPS spectra, the peaks at ~531 eV, ~ 285 eV, ~151 eV and ~100 eV are the contributions from O 1s, C 1s, Si 2s and Si 2p respectively. Nanostructure morphologies of the Si-CNT thin films have been analyzed by field emission scanning electron microscopy. The length of the silicon incorporated carbon nano tubes ~100 nm and corresponding diameter ~20 nm. The increase of atomic percentage of Si in the CNT thin films, room temperature electrical conductivity increases. The electrical conductivity increase from 3.87x103 to 4.49x104 S cm-1 as the silicon atomic percentage in the CNT thin films increases from 0 to 3.82 % respectively. This study showed that the Si-CNTs thin films potentially useful in electrical application of varying its conductivity by changing the Si content independently from other parameters


2015 ◽  
Vol 12 (10) ◽  
pp. 1085-1094 ◽  
Author(s):  
Jakaria Ahmad ◽  
Kateryna Bazaka ◽  
Jason D. Whittle ◽  
Andrew Michelmore ◽  
Mohan V. Jacob

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 780
Author(s):  
Andrea Nardi ◽  
Chiara Bigi ◽  
Sandeep Kumar Chaluvadi ◽  
Regina Ciancio ◽  
Jun Fujii ◽  
...  

The electronic properties of strontium ruthenate SrRuO3 perovskite oxide thin films are modified by epitaxial strain, as determined by growing on different substrates by pulsed laser deposition. Temperature dependence of the transport properties indicates that tensile strain deformation of the SrRuO3 unit cell reduces the metallicity of the material as well as its metal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Ru buckling angle due to compressive strain is counterweighted by the increased overlap of the conduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting into an increased MIT temperature, i.e., a more conducting material. In particular, in the more metallic samples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of an extra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening, as observed in volume sensitive photoemission of the unstrained material.


1992 ◽  
Vol 7 (8) ◽  
pp. 1984-1986 ◽  
Author(s):  
Shigemi Kohiki ◽  
Mikihiko Nishitani ◽  
Takayuki Negami ◽  
Takahiro Wada

The Cu, In, and Se core-level electron binding energies of the p-type Cu–In–Se–N thin film were larger than those of the n-type Cu–In–Se thin film. The positive shift of the core-electron binding energies for the Cu–In–Se–N film is consistent with that expected from the conduction types of the films. Holes were positioned in the Cu–Se antibonding orbitals of the Cu–In–Se–N film. The analysis using the Auger parameter revealed that the Cu–Se bonding interaction is stronger for the Cu–In–Se–N film than for the Cu–In–Se film.


Sign in / Sign up

Export Citation Format

Share Document