scholarly journals Enhancement of Electrical Property of Carbon Nanotube by Silicon Incorporation

Silicon incorporated carbon nano tube has been synthesized by radio frequency plasma enhanced chemical vapor deposition technique with acetylene gas. Tetraethyl orthosilicate solution was used for the synthesis of silicon incorporation in the CNT thin films. Energy dispersive X-ray analysis shows that the Si atomic percentage in the CNT thin films varied from 0 % to 3.82 %. The different chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy spectra. In the XPS spectra, the peaks at ~531 eV, ~ 285 eV, ~151 eV and ~100 eV are the contributions from O 1s, C 1s, Si 2s and Si 2p respectively. Nanostructure morphologies of the Si-CNT thin films have been analyzed by field emission scanning electron microscopy. The length of the silicon incorporated carbon nano tubes ~100 nm and corresponding diameter ~20 nm. The increase of atomic percentage of Si in the CNT thin films, room temperature electrical conductivity increases. The electrical conductivity increase from 3.87x103 to 4.49x104 S cm-1 as the silicon atomic percentage in the CNT thin films increases from 0 to 3.82 % respectively. This study showed that the Si-CNTs thin films potentially useful in electrical application of varying its conductivity by changing the Si content independently from other parameters

2021 ◽  
Vol 1206 (1) ◽  
pp. 012028
Author(s):  
Sk Faruque Ahmed ◽  
Mohibul Khan ◽  
Nillohit Mukherjee

Abstract Silicon incorporated carbon nanotube (Si-CNTs) thin films was prepared by radio frequency plasma enhanced chemical vapor deposition technique. Tetraethyl orthosilicate solution was used for incorporation of silicon in CNTs thin films. Energy dispersive X-ray analysis shows that the silicon atomic percentage was varied from 0 % to 6.1 %. The chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy data. The various peaks at ~531 eV, ~ 285 eV, ~155 eV and ~104 eV was observed in the XPS spectra due to the oxygen, carbon and silicon respectively. Surface morphologies of Si-CNTs thin films have been analyzed by field emission scanning electron microscopy, which revels that the length of the silicon incorporated carbon nanotubes ~500 nm and corresponding diameter ~80 nm. The room temperature electrical conductivity was increased whereas the activation energy was decreased with the increase of atomic percentage of silicon in Si-CNTs thin films. The room temperature electrical conductivity was increased from 4.3 × 103 to 7.1 × 104 S cm−1 as the silicon atomic percentage in Si-CNTs thin films increases from 0 to 6.1 % respectively.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 345 ◽  
Author(s):  
F. Chale-Lara ◽  
M. Zapata-Torres ◽  
F. Caballero-Briones ◽  
W. De la Cruz ◽  
N. Cruz Gonzalez ◽  
...  

We report the synthesis of AlN hexagonal thin films by pulsed laser ablation, using Al target in nitrogen ambient over natively-oxidized Si (111) at 600°C. Composition and chemical state were determined by X-ray photoelectron spectroscopy (XPS); while structural properties were investigated using X-ray diffraction (XRD). High-resolution XPS spectra present a gradual shift to higher binding energies on the Al2ppeak when nitrogen pressure is incremented, indicating the formation of the AlN compound. At 30 mTorr nitrogen pressure, theAl2p peak corresponds to AlN, located at 73.1 eV, and the XRD pattern shows a hexagonal phase of AlN. The successful formation of the AlN compound is corroborated by UV-Vis reflectivity measurements.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


Author(s):  
Sahadeb Ghosh ◽  
Mangala Nand ◽  
Rajiv Kamparath ◽  
Mukul Gupta ◽  
Devdatta M Phase ◽  
...  

Abstract Oriented thin films of β-(Ga1-xFex)2O3 have been deposited by RF magnetron sputtering on c-Al2O3 and GaN substrates. The itinerant character of Fe 3d states forming the top of the valence band (VB) of Fe substituted of β-Ga2O3 thin films has been determined from resonant photoelectron spectroscopy (RPES). Further, admixture of itinerant and localized character of these Fe 3d sates is obtained for larger binding energies i.e deeper of VB. The bottom of the conduction band (CB) for β-(Ga1-xFex)2O3 is also found to be strongly hybridized states involving Fe 3d and O 2p states as compared to that of Ga 4s in pristine β-Ga2O3. This suggests that β-Ga2O3 transforms from band like system to a charge transfer system with Fe substitution. Furthermore, the bandgap red shits with Fe composition, which has been found to be primarily related to the shift of the CB edge.


2006 ◽  
Vol 321-323 ◽  
pp. 1687-1690 ◽  
Author(s):  
Hee Joon Kim ◽  
Dong Young Jang ◽  
Prem Kumar Shishodia ◽  
Akira Yoshida

In the paper, zinc oxide (ZnO) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD) at different substrate temperatures. The ZnO films are characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The analysis results indicate that highly crystalline films with high orientation can be obtained at a substrate temperature of 300 oC with 50 ml/min flow rate from Diethylzinc (DEZ). Furthermore, the investigation of optical property shows that ZnO films are transparent, and the peak transmittance in the visible region is as high as 85%.


2012 ◽  
Vol 198-199 ◽  
pp. 28-31
Author(s):  
Chun Ya Li ◽  
Xi Feng Li ◽  
Long Long Chen ◽  
Ji Feng Shi ◽  
Jian Hua Zhang

Under different growth conditions, silicon Oxide (SiOx) thin films were deposited successfully on Si (100) substrates and glass substrates by plasma enhanced chemical vapor deposition (PECVD). The thickness, refractive index and growth rate of the thin films were tested by ellipsometer. The effects of deposition temperature on the structure and properties of SiOx films were studied using X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. The results show that the SiOx films were amorphous at different deposition temperature. The peaks of Si2p and O1s shifted to higher binding energy with temperature increasing. The SiOx films had high transmissivity at the range of 400-900nm. By analyzing the observation and data, the influence of deposition parameters on the electrical properties and interface characteristics of SiOx thin film prepared by PECVD is systematically discussed. At last, SiOx thin film with excellent electrical properties and good interface characteristic is prepared under the relatively optimum parameters.


2002 ◽  
Vol 750 ◽  
Author(s):  
Yuka Nasu ◽  
Masami Aono ◽  
Shinichiro Aizawa ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTCarbon nitride (CNx) thin films have been prepared by hot carbon filament chemical vapor deposition, and the nitrogen content in the films is approximately 0.05. The CNx films have been irradiated by 0.1 keV nitrogen ions to increase the nitrogen content after deposition. The nitrogen content in the CNx films was obtained with X-ray photoelectron spectroscopy. Scanning electron microscopy was employed to study microstructures of the films. The experimental results show that nitrogen ions are chemically combined with the CNx films and as a result the nitrogen content increases up to approximately 0.30. Furthermore, it is found that nitrogen ions change the film microstructures and sputter the surfaces of CNx films.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1173 ◽  
Author(s):  
L. G. Bulusheva ◽  
V. E. Arkhipov ◽  
K. M. Popov ◽  
V. I. Sysoev ◽  
A. A. Makarova ◽  
...  

Heteroatom doping is a widely used method for the modification of the electronic and chemical properties of graphene. A low-pressure chemical vapor deposition technique (CVD) is used here to grow pure, nitrogen-doped and phosphorous-doped few-layer graphene films from methane, acetonitrile and methane-phosphine mixture, respectively. The electronic structure of the films transferred onto SiO2/Si wafers by wet etching of copper substrates is studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy using a synchrotron radiation source. Annealing in an ultra-high vacuum at ca. 773 K allows for the removal of impurities formed on the surface of films during the synthesis and transfer procedure and changes the chemical state of nitrogen in nitrogen-doped graphene. Core level XPS spectra detect a low n-type doping of graphene film when nitrogen or phosphorous atoms are incorporated in the lattice. The electrical sheet resistance increases in the order: graphene < P-graphene < N-graphene. This tendency is related to the density of defects evaluated from the ratio of intensities of Raman peaks, valence band XPS and NEXAFS spectroscopy data.


Sign in / Sign up

Export Citation Format

Share Document