scholarly journals Berkovich indentation of diamondlike carbon coatings on silicon substrates

2008 ◽  
Vol 23 (7) ◽  
pp. 1862-1869 ◽  
Author(s):  
Ayesha J. Haq ◽  
P.R. Munroe ◽  
M. Hoffman ◽  
P.J. Martin ◽  
A. Bendavid

The deformation behavior of diamondlike carbon (DLC) coatings on silicon substrates induced by Berkovich indentation has been investigated. DLC coatings deposited by a plasma-assisted chemical vapor deposition technique were subjected to nanoindentation with a Berkovich indenter over a range of maximum loads from 100 to 300 mN. Distinct pop-ins were observed for loads greater than 150 mN. However, no pop-out was observed for the loads studied. The top surface of the indents showed annular cracks with associated fragmented material. The cross sections showed up to 20% localized reduction in thickness of the DLC coating beneath the indenter tip. Cracking, {111} slip, stacking faults, and localized phase transformations were observed in the silicon substrate. The discontinuities in the load–displacement curves at low loads are attributed to plastic deformation of the silicon substrate, whereas at higher loads they are attributed to plastic deformation as well as phase transformation.

1999 ◽  
Vol 14 (5) ◽  
pp. 2173-2180 ◽  
Author(s):  
M. Nastasi ◽  
P. Kodali ◽  
K. C. Walter ◽  
J. D. Embury ◽  
R. Raj ◽  
...  

The fracture behavior of diamondlike carbon (DLC) coatings on Si substrates has been examined using microindentation. The presence of DLC coatings reduces the radial crack length to less than one-half the crack length observed in uncoated Si at the same indenter load. A total work of fracture analysis of the radial cracks formed in the DLC-coating/Si-substrate system gives 10.1 MPa m1/2 as the average fracture toughness for DLC alone. A bond-breaking calculation for DLC suggests that the elastic limit fracture toughness should be 1.5 MPa (m)1/2. The higher value obtained from experiment and total work analysis suggests that plastic work and/or a tortuous path crack evolution occurred during DLC fracture process.


1986 ◽  
Vol 67 ◽  
Author(s):  
Shirley S. Chu ◽  
T. L. Chu ◽  
H. Firouzi

ABSTRACTSingle crystalline epitaxial GaAs layers have been grown on silicon substrates with a thin germanium interlayer. All semiconductor layers were deposited by the chemical vapor deposition technique. The surface condition of the silicon substrate is an important factor affecting the quality of GaAs/Ge films on silicon. P+/n homojunction solar cells of 0.25 cm2 area with an AM1 efficiency near 12% have been prepared.


2016 ◽  
Vol 721 ◽  
pp. 436-440 ◽  
Author(s):  
Maxim Yashin ◽  
Andrei Bogatov ◽  
Vitali Podgursky

The study investigates the wear of microcrystalline diamond (MCD) and diamond-like carbon (DLC) coatings. The MCD and DLC coatings were grown by plasma enhanced chemical vapor deposition (PECVD) method on WC-Co substrates. The sliding wear tests were performed on the ball-on-plate type of tribometer in reciprocating mode. The ball-cratering wear tests were carried out using Calo tester. The mechanical profilometer, optical and scanning electron microscopes (SEM) were used for investigation of the surface morphology of the wear scars. The wear of DLC coating is more intense in comparison to the MCD coating. In contrast to the MCD coating, no evidence of the DLC coating deflection was found.


1988 ◽  
Vol 126 ◽  
Author(s):  
M. Razeghi ◽  
M. Defour ◽  
F. Omnes ◽  
J. Nagle ◽  
P. Maurel ◽  
...  

ABSTRACTHigh quality GaAs and InP have been grown on silicon substrates, using low pressure metalorganic chemical vapor deposition technique. The growth temperature is 550°C and the growth rate 100 A/min.Photoluminescence, X-ray diffraction and electrochemical profiling verified the high quality of these layers. The use of superlattices as buffer layers, (GaAs/GaInP) in the case of GaAs/Si and (GaInAsP/InP) in the case of InP/Si, decreased the amount of misfit dislocations in the epitaxial layer. Carrier concentrations as low as 5.1015 cm−3 have been measured by electrochemical profiling.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Said Jahanmir ◽  
Hooshang Heshmat ◽  
Crystal Heshmat

Diamondlike carbon (DLC) coatings, particularly in the hydrogenated form, provide extremely low coefficients of friction in concentrated contacts. The objective of this investigation was to evaluate the performance of DLC coatings for potential application in foil bearings. Since in some applications the bearings experience a wide range of temperatures, tribological tests were performed using a single foil thrust bearing in contact with a rotating flat disk up to 500°C. The coatings deposited on the disks consisted of a hydrogenated diamondlike carbon film (H-DLC), a nonhydrogenated DLC, and a thin dense chrome deposited by the Electrolyzing™ process. The top foil pads were coated with a tungsten disulfide based solid lubricant (Korolon™ 900). All three disk coatings provided excellent performance at room temperature. However, the H-DLC coating proved to be unacceptable at 300°C due to lack of hydrodynamic lift, albeit the very low coefficient of friction when the foil pad and the disk were in contact during stop-start cycles. This phenomenon is explained by considering the effect of atmospheric moisture on the tribological behavior of H-DLC and using the quasihydrodynamic theory of powder lubrication.


1996 ◽  
Vol 438 ◽  
Author(s):  
C. G. Fountzoulas ◽  
J. D. Demaree ◽  
L. C. Sengupta ◽  
J. K. Hirvonen

AbstractAmorphous, 700 nm thick, diamond-like carbon coatings containing silicon (Si-DLC), farmed by Ar+ ion beam assisted deposition (IBAD) on silicon substrates, were annealed in air at temperatures ranging from room temperature to 600°C for 30 minutes. RBS analysis showed that the composition of the films remained the same up to 200°C, but at higher temperatures the Si-DLC coatings began to oxidize at the outer surface of the coating, forming a surface layer of SiO2. After in-air annealing at 600°C the coating had been completely converted to SiO2, with no trace of carbon seen by RBS. FTIR spectra of the unannealed coatings showed a very broad mode typical of Si-DLC bonding as well as some absorption features associated with Si and SiO2. Above 200°C the transmission mode shifted to higher frequencies which may be caused by the growth of SiO2 and the decrease of the Si-DLC film thickness. The room temperature ball-on-disk friction coefficient of the coating against a 1/2′′ diameter 440 C steel ball at 1 N load ranged from 0.2 for the original coating up to 0.5 after a 100° anneal and returned to 0.2 after annealing at 200–400°C and fell to 0.12 after a 500°C exposure. The average Knoop microhardness (uncorrected for substrate effects) was 10 GPa (1,000 KHN) for coatings annealed at temperatures as high as 400°C. All coatings up to 500 °C passed the qualitative “Scotch Tape” test.


2014 ◽  
Vol 874 ◽  
pp. 9-15 ◽  
Author(s):  
Monika Madej

The aim of the study was to analyze the superhard anti-wear diamond-like carbon coatings produced by Plasma Assisted Chemical Vapor Deposition (PACVD) and Physical Vapour Deposition (PVD). The a-C:H and a-C:H:W coatings were deposited on steel elements operating under friction conditions. The analysis involved comparing the tribological properties of coated metal elements with those of uncoated elements. It was essential to analyze how the coating composition and structure influence the tribological behaviour of elements under dry and lubrication friction conditions. The coating structure was analyzed by observing the topography of the surface and the cross-sections using an atomic force microscope (AFM) and a scanning electron microscope (SEM). The results were employed to determine the elemental composition and thickness of the coatings. The tribological tests were performed applying a ball-on-disc tribometer and using a pin-on-plate tribometer. The tribological properties were analyzed also in a micro scale using a microtribometer. Compared with the substrate material - steel, the diamond-like carbon coatings showed lower linear wear, lower friction coefficient and higher hardness.


2007 ◽  
Vol 539-543 ◽  
pp. 1230-1235 ◽  
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.


2000 ◽  
Vol 15 (3) ◽  
pp. 590-592 ◽  
Author(s):  
Gerard W. Malaczynski ◽  
Alaa A. Elmoursi ◽  
Chi H. Leung ◽  
Aboud H. Hamdi ◽  
Albert B. Campbell

A surface layer of metal carbides provides an excellent interface to achieve a highly adherent diamondlike carbon (DLC) coating. A plasma immersion ion implantation (PIII)-based procedure is described, which delivers a high retained dose of implanted carbon at the surface of aluminum alloys. A shallow implantation profile, followed by argon sputter cleaning and continued until a saturated carbon matrix is brought to the surface, provides an excellent interface for subsequent growth of DLC. At a carbon retained dose above 1018 atoms/cm2 the DLC adhesion exceeds the coating's cohesion strength. Regardless of the silicon content in the aluminum, the coating produced by this method required tensile strengths typically exceeding 140 MPa to separate an epoxy-coated stud from the coating in a standard pull test. Improved DLC adhesion was also observed on chromium and titanium. The reported tensile strength is believed to substantially exceed performance of DLC coatings produced by any other method.


2013 ◽  
Vol 667 ◽  
pp. 80-85
Author(s):  
F.S. Husairi ◽  
S.A.M Zobir ◽  
Mohamad Rusop Mahmood ◽  
Saifollah Abdullah

In this work, the electrical properties of carbon nanotubes were deposited on silicon substrate at different temperatures studied. CNTs were deposited on silicon at temperature 700 to 850 0C by using double-furnace thermal chemical vapor deposition technique. Carbon nanotubes with diameters of 20 to 30 nm were successfully synthesized on a silicon substrate. In this system, carbon nanotubes were grown directly on the p-type silicon. The samples were characterized using field emission scanning electron microscopy and micro-Raman spectroscopy. Based on micro-Raman spectroscopy result, the peak carbon nanotube (around 1 300 to 1 600 nm) was detected. Good electrical contact produced when Au sputter on CNTs characterized by I-V probe. Samples CNTs produced at 850 OC possess good conducting compare to other.


Sign in / Sign up

Export Citation Format

Share Document