Comparative Analysis of Wear Rates of Microcrystalline Diamond and Diamond-Like Carbon Coatings Deposited on WС-Co Substrates

2016 ◽  
Vol 721 ◽  
pp. 436-440 ◽  
Author(s):  
Maxim Yashin ◽  
Andrei Bogatov ◽  
Vitali Podgursky

The study investigates the wear of microcrystalline diamond (MCD) and diamond-like carbon (DLC) coatings. The MCD and DLC coatings were grown by plasma enhanced chemical vapor deposition (PECVD) method on WC-Co substrates. The sliding wear tests were performed on the ball-on-plate type of tribometer in reciprocating mode. The ball-cratering wear tests were carried out using Calo tester. The mechanical profilometer, optical and scanning electron microscopes (SEM) were used for investigation of the surface morphology of the wear scars. The wear of DLC coating is more intense in comparison to the MCD coating. In contrast to the MCD coating, no evidence of the DLC coating deflection was found.

Author(s):  
E. Konca ◽  
Y. T. Cheng ◽  
A. T. Alpas

Magnetron sputtered non-hydrogenated diamond-like carbon (DLC) coatings were tested against Al, Cu and Ti pins using a vacuum pin-on-disc tribometer. The objective was to compare Al, Ti, and Cu transfer to DLC coatings in air (29% RH) and an inert atmosphere (argon). In argon, a significant amount of adhesion and material transfer occurred from the Al and Ti pins to the DLC coating surfaces inflicting severe damage to the coatings. Wear and material transfer of the DLC coating against Cu were negligible in argon. Compared to tests in argon, the tribological performance of the DLC coatings against Al and Ti improved significantly in ambient air. In contrast, the wear rate of the DLC coatings against Cu was much higher in ambient air compared to that in argon.


2008 ◽  
Vol 23 (7) ◽  
pp. 1862-1869 ◽  
Author(s):  
Ayesha J. Haq ◽  
P.R. Munroe ◽  
M. Hoffman ◽  
P.J. Martin ◽  
A. Bendavid

The deformation behavior of diamondlike carbon (DLC) coatings on silicon substrates induced by Berkovich indentation has been investigated. DLC coatings deposited by a plasma-assisted chemical vapor deposition technique were subjected to nanoindentation with a Berkovich indenter over a range of maximum loads from 100 to 300 mN. Distinct pop-ins were observed for loads greater than 150 mN. However, no pop-out was observed for the loads studied. The top surface of the indents showed annular cracks with associated fragmented material. The cross sections showed up to 20% localized reduction in thickness of the DLC coating beneath the indenter tip. Cracking, {111} slip, stacking faults, and localized phase transformations were observed in the silicon substrate. The discontinuities in the load–displacement curves at low loads are attributed to plastic deformation of the silicon substrate, whereas at higher loads they are attributed to plastic deformation as well as phase transformation.


2018 ◽  
Vol 883 ◽  
pp. 43-47 ◽  
Author(s):  
Sun Hui Yao ◽  
Yan Liang Su ◽  
Yu Chen Lai ◽  
Huang Ming Wu

This paper reports comparative studies on effects of interlayer on mechanical properties of diamond-like carbon (DLC) coatings. Two interlayers, TiC/Ti and CrC/Cr, were deposited and studied. The DLC coatings were prepared by using an unbalanced magnetron sputtering system. The chemical composition, micro-structure, constituted phases, and fundamental mechanical and tribological properties were evaluated. The results showed that the two amorphous (a-) DLC coatings were obtained. The a-DLC coating with the TiC/Ti interlayer showed higher adhesion, hardness and wear resistance than the one with the CrC/Cr interlayer.


2006 ◽  
Vol 309-311 ◽  
pp. 713-716 ◽  
Author(s):  
E.T. Uzumaki ◽  
C.S. Lambert ◽  
L.O. Bonugli ◽  
A.R. Santos ◽  
Cecília A.C. Zavaglia

For the potential use of diamond-like carbon (DLC) coating for biomedical applications, it would be important to evaluate the biological effects of these coatings. In this study, DLC coatings were deposited on glass coverslips using the plasma immersion process, which produces films with adhesion properties superior to those prepared with conventional techniques. Scanning electron microscopic and atomic force microscopic observations were used to study the morphology of fibroblasts growth on DLC coatings.


Author(s):  
A. H. S. Jones ◽  
D Camino ◽  
D. G. Teer ◽  
J Jiang

A series of new diamond-like carbon (DLC) coatings has been produced by magnetron sputtering using in-house equipment. The new hydrogen-free pure carbon coatings were deposited by sputtering carbon targets in a pure argon atmosphere. With a metallic interlayer, they have shown improved tribological properties when compared with conventional hydrogenated DLC in pin-on-disc and reciprocating wear tests. The films have also shown the ability to perform in oil, water and dry environments, and to protect the counterpart. The method of ball cratering on wear tracks provided taper sections to allow the analysis of coating wear, interface condition and failure mechanisms. Wear rates as low as 3 × 10−17 m3/N m are shown for 100 N, 10000 cycle reciprocating wear tests in air and in water. Scratch tests have been used to assess coating adhesion with critical loads as high as 70 N. Results from nano-indentation, Raman spectroscopy, electron energy loss spectroscopy and X-ray diffraction are also reported.


2015 ◽  
Vol 641 ◽  
pp. 111-115
Author(s):  
Marek Poręba ◽  
Paulina Zawadzka ◽  
Maria Richert ◽  
Jan Sieniawski ◽  
Tomasz Strączek ◽  
...  

The Diamond like carbon (DLC) and diamond coatings were deposited on a steel substrate using plasma assisted chemical vapor deposition (PA CVD) method. The parameters of deposition were analyzed in relation to the effectiveness of the process and the quality of coatings. It was found that the DLC coatings formed only at specific conditions of temperature and pressure of precursor gases. The characterization of coatings were performed by Raman spectromicroscopy, X-ray diffraction and infrared spectromicroscopy which allowed us to recognize the dominant phases and the distribution of bonds inside the coatings. The chemical bonds such as sp2 C-C, sp3 CH3/CH2 and sp3 CH were found in microstructure coatings. The maps of distribution of bonds in the coatings were also prepared. Additionally, their microstructure was investigated by scanning electron microscopes which have revealed a spherical grains morphology of the coatings.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3543
Author(s):  
Parand R. Riley ◽  
Pratik Joshi ◽  
Sina Azizi Machekposhti ◽  
Ritesh Sachan ◽  
Jagdish Narayan ◽  
...  

In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 376
Author(s):  
Mao Kaneko ◽  
Masanori Hiratsuka ◽  
Ali Alanazi ◽  
Hideki Nakamori ◽  
Kazushige Namiki ◽  
...  

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.


2020 ◽  
Vol 10 (1) ◽  
pp. 688-698
Author(s):  
Joanna Kowalczyk ◽  
Krystian Milewski ◽  
Monika Madej ◽  
Dariusz Ozimina

AbstractThe purpose of the study was to evaluate the properties of diamond-like carbon DLC coatings with ionic liquids and cutting fluid containing zinc aspartate used as lubricants. The DLC coatings (a–C:H) were deposited onto the 100Cr6 steel substrate by physical vapour deposition PVD. The surface morphology testing, cross section and chemical composition analyses of the DLC coatings were performed using the scanning electron microscope, equipped with an EDS microanalyzer. Surface geometry measurements prior to and after tribological tests were performed on a confocal microscope with interferometry. The tribological tests were carried out on an Anton Paar TRB3 tribometer under technically dry friction and lubricated conditions with an ionic liquid, trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide and 1–butyl– 3–methylimidazolium bis (trifluoromethylsulfonyl) imide and cutting fluid with zinc aspartate. The results show that DLC coatings and ionic liquids can significantly reduce resistance to motion.


2021 ◽  
pp. 1-19
Author(s):  
Xinyu Wang ◽  
Xudong Sui ◽  
Shuaituo Zhang ◽  
Mingming Yan ◽  
Yan Lu ◽  
...  

Abstract For improving the wear resistance, thick silicon doped hydrogenated amorphous carbon (a-SiC:H) coatings were deposited on cold working tool steels by Plasma Enhanced Chemical Vapor Deposition (PECVD) technology. The increase of the acetylene (C2H2) flow rate distinctly tuned the microstructure of a-SiC:H coatings, including an increase in the coating thickness (>15 μm), a decrease in the silicon content, a greater sp2/sp3 ratio and higher degree of graphitization. The highest hardness of 19.61 GPa and the greatest critical load of 50.7 N were obtained. The coating showed low wear rates against different friction pairs and presented excellent abrasive wear resistance at high applied load and the wear rates decreased with increasing loads, which exhibited an outstanding application prospect in cold working tool steels.


Sign in / Sign up

Export Citation Format

Share Document