Fabrication of Micro-Cantilevers Using RF Magnetron Sputtered Silicon Carbide Films

2011 ◽  
Vol 254 ◽  
pp. 163-166
Author(s):  
Atul Vir Singh ◽  
Sudhir Chandra ◽  
Gouranga Bose

In the present work, silicon carbide (SiC) films were deposited by RF magnetron sputtering process on Si (100) substrates for micro-cantilever fabrication. The films were deposited without external substrate heating using a ceramic SiC target at 10 mTorr sputtering pressure, 200 W power and 50 mm target-to-substrate spacing. X-ray diffraction pattern shows that the films were amorphous in nature. In order to investigate the chemical inertness, the SiC coated Si substrates were dipped in buffered HF (BHF) at room temperature and in 40% KOH solution at 80 °C for varying length of time. Atomic force microscope was used to investigate surface roughness and morphology of the films before and after chemical processing. Micro-cantilever beams of the SiC film were fabricated by a single mask process. The SiC film was patterned using reactive ion etching (RIE) in SF6-O2 plasma. Thermally evaporated Al film was used as a mask during RIE process. This process also resulted in the formation of convex corners which were exploited for anisotropic etching of Si under the SiC film. The SiC cantilever beams were released by anisotropic etching of Si in KOH at 80 °C without using additional masking material. Scanning electron microscopy was used to observe the fabricated SiC micro-cantilever beams. The morphology of the SiC film after prolonged exposure to KOH was observed to be similar to that of the as-deposited film. The RF magnetron sputtered SiC films were found to be highly inert in KOH and BHF solutions. Due to difficulty in micromachining of bulk SiC material and its high cost, the RF sputtered SiC films on Si can provide a low cost structural material in MEMS.

1999 ◽  
Vol 572 ◽  
Author(s):  
W. L. Samey ◽  
L. Salamanca-Riba ◽  
P. Zhou ◽  
M. G. Spencer ◽  
C. Taylor ◽  
...  

ABSTRACTSiC/Si films generally contain stacking faults and amorphous regions near the interface. High quality SiC/Si films are especially difficult to obtain since the temperatures usually required to grow high quality SiC are above the Si melting point. We added Ge in the form of GeH2 to the reactant gases to promote two-dimensional CVD growth of SiC films on (111) Si substrates at 1000°C. The films grown with no Ge are essentially amorphous with very small crystalline regions, whereas those films grown with GeH2 flow rates of 10 and 15 sccm are polycrystalline with the 3C structure. Increasing the flow rate to 20 sccm improves the crystallinity and induces growth of 6H SiC over an initial 3C layer. This study presents the first observation of spontaneous polytype transformation in SiC grown on Si by MOCVD.


2012 ◽  
Vol 1433 ◽  
Author(s):  
A. Severino ◽  
M. Mauceri ◽  
R. Anzalone ◽  
A. Canino ◽  
N. Piluso ◽  
...  

ABSTRACT3C-SiC is very attractive due the chance to be grown on large-area, low-cost Si substrates. Moreover, 3C-SiC has higher channel electron mobility with respect to 4H-SiC, interesting property in MOSFET applications. Other application fields where 3C-SiC can play a significant role are solar cells and MEMS-based sensors. In this work, we present a general overview of 3C-SiC growth on Si substrate. The influence of growth parameters, such as the growth rate, on the crystal quality of 3C-SiC films is discussed. The main issue for 3C-SiC development is the reduction of the stacking fault density, which shows an exponential decreasing trend with the film thickness tending to a saturation value of about 1000 cm-1. Some aspect of processing will be also faced with the realization of cantilever for Young modulus calculations and the implantation of Al ions for the study of damaging and recovery of the 3C-SiC crystal.


2012 ◽  
Vol 1433 ◽  
Author(s):  
Mariana A. Fraga ◽  
Humber Furlan ◽  
Rodrigo S. Pessoa ◽  
Luiz A. Rasia

ABSTRACTAmorphous silicon carbide (a-SiC) thin films have been grown on aluminum nitride (AlN) intermediate layers on (100) Si substrates by RF magnetron sputtering technique. Profilometry, four-point probe method, Rutherford backscattering spectroscopy (RBS) and Fourier transform infrared (FTIR) were employed to characterize the as-deposited SiC thin films. Test structures have been developed to investigate the piezoresistive properties. These structures consist of SiC thin-film resistors on AlN/Si substrates defined by reactive ion etching (RIE) with Ti/Au pads formed by lift-off process. Gauge factor (GF) and temperature coefficient of resistance (TCR) measurements have been performed and demonstrated the potential of these resistors to be used as sensing elements in devices for high temperature application.


2012 ◽  
Vol 711 ◽  
pp. 27-30 ◽  
Author(s):  
Andrea Severino ◽  
Ruggero Anzalone ◽  
Massimo Camarda ◽  
Nicolò Piluso ◽  
Francesco La Via

In this work, we focus our attention on the characterization of 3C-SiC films, grown within a CVD reactor, on Si substrates. It will be shown how the growth procedures influence the SiC film structure and quality with the growth rate used during the growth used as example. Evaluation of crystal structure has been conducted by X-Ray Diffraction (XRD), Raman microscopy and Transmission Electron Microscopy (TEM). Overall film quality increases if films are grown under low growth rate conditions, thanks also to an important reduction in the density of micro-twins. The trend of the full widths at half maximum (FWHMs) of SiC rocking curves, considered good ‘quality indicator’ as their broadenings are affected by crystallographic defects, as a function of 3C-SiC thickness shows a saturated regime for very thick films, due to the saturation of stacking fault density after 50 μm of growth. This work wants to suggest a reasonable path for the characterization of the material structure that can be useful, anywhere and in any time, to assess if the morphology and microstructure of our films are satisfactory and to drive towards the desired improvement.


2021 ◽  
Author(s):  
Hang-hang WANG ◽  
Wen-qi LU ◽  
Jiao ZHANG ◽  
Jun XU

Abstract Stoichiometric and silicon-rich (Si-rich) SiC films were deposited by Microwave Electron Cyclotron Resonance (MW-ECR) plasma enhanced RF magnetron sputtering method. As-deposited films were oxidized at 800, 900 and 1000 ℃ in air for 60 min. The chemical composition and structure of the films were analyzed by X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy and Fourier Transform Infrared spectroscopy (FT-IR). The surface morphology of the films before and after high temperature oxidation was measured by atomic force microscopy. The mechanical property of the films was measured by a Nano-indenter. The anti-oxidation temperature of the Si-rich SiC film is 100 ℃ higher than that of the stoichiometric SiC film. The oxidation layer thickness of the Si-rich SiC film is thinner than that of the stoichiometric SiC film in depth direction. The large amount of extra silicon in the Si-rich SiC film plays an important role in the improvement of its high temperature anti-oxidation property.


2007 ◽  
Vol 1049 ◽  
Author(s):  
Jayadeep Deva Reddy ◽  
Alex A. Volinsky ◽  
Christopher L. Frewin ◽  
Chris Locke ◽  
Stephen E. Saddow

AbstractThere is a technological need for hard thin films with high elastic modulus and fracture toughness. Silicon carbide (SiC) fulfills such requirements for a variety of applications at high temperatures and for high-wear MEMS. A detailed study of the mechanical properties of single crystal and polycrystalline 3C-SiC films grown on Si substrates was performed by means of nanoindentation using a Berkovich diamond tip. The thickness of both the single and polycrystalline SiC films was around 1-2 μm. Under indentation loads below 500 μN both films exhibit Hertzian elastic contact without plastic deformation. The polycrystalline SiC films have an elastic modulus of 457 GPa and hardness of 33.5 GPa, while the single crystalline SiC films elastic modulus and hardness were measured to be 433 GPa and 31.2 GPa, respectively. These results indicate that polycrystalline SiC thin films are more attractive for MEMS applications when compared with the single crystal 3C-SiC, which is promising since growing single crystal 3C-SiC films is more challenging.


2012 ◽  
Vol 1433 ◽  
Author(s):  
H. S. Medeiros ◽  
R. S. Pessoa ◽  
M. A. Fraga ◽  
L. V. Santos ◽  
H. S. Maciel ◽  
...  

ABSTRACTThe influence of negative substrate bias on the chemical, electrical and mechanical properties of silicon carbide (SiC) thin films deposited onto (100) silicon substrate by dc magnetron cosputtering without external substrate heating is reported. These studies were performed by using the following techniques: Rutherford backscattering spectroscopy (RBS), profilometry, Raman spectroscopy, four-point probe method and nanoindentation. The results indicate that there is a good correlation between the substrate bias voltage and the argon incorporation into SiC film, namely, the SiC films deposited under substrate bias of –200 V and –300 V have higher argon content and higher elastic modulus and hardness than those deposited at 0 V. An opposite behavior was found for electrical resistivity: the SiC deposited at –300 V has resistivity of 0.45 Ω.cm whereas the deposited at 0 V has 7.0 Ω.cm.


2007 ◽  
Vol 1009 ◽  
Author(s):  
Allison Hess ◽  
Rocco Parro ◽  
Jiangang Du ◽  
Jeremy Dunning ◽  
Maximillian Scardelletti ◽  
...  

AbstractThis paper reports our effort to develop amorphous silicon carbide (a-SiC) films for use as hermetic thin film coatings for mechanically-flexible neural electrodes. In our work, the a-SiC films were deposited by plasma enhanced chemical vapor deposition (PECVD) using two distinct methods, namely a single precursor approach using trimethylsilane, and a dual precursor approach using methane (CH4) and silane (SiH4). The mechanical properties of films deposited on Si substrates were characterized using the wafer curvature and load-deflection methods. The effectiveness of the films as moisture barriers for polyimide substrates was characterized by measuring the leakage currents of SiC-coated interdigitated electrode structures soaked in PBS. A microfabricated prototype of the flat interface nerve electrode (FINE) based on a flexible polyimide substrate and a PECVD SiC capping layer was fabricated using a monolithic process based on conventional micromachining techniques. To facilitate this approach, a reactive ion etching process was developed that exhibited high etch rates and high selectively to the SiC films.


1996 ◽  
Vol 423 ◽  
Author(s):  
F. Namavar ◽  
P. Colter ◽  
E. Gagnon ◽  
A. Cremins-Costa ◽  
D. Perry ◽  
...  

AbstractWe have grown silicon carbide (SiC) on ultrathin Si (about 300Å) and on thick Si (about 2000Å) on commercial SIMOX (from IBIS Corp and SOITEC, Inc.), and bulk Si. Electron diffraction and Rutherford backscattering spectroscopy (RBS)/channeling studies indicate epitaxial growth of singlecrystal β-SiC even at growth temperatures as low as 1100°C.We have already demonstrated the fabrication of ultrathin Si, as thin as 140Å on SiO2 by using the low-energy SIMOX (LES) (20 to 30 keV) process to produce films of lower cost and excellent integrity compared to thinned commercial SIMOX. Based on these results, ultrathin Si-on-insulator (SOI) substrates appear to have great potential for device quality SiC films. However, the carbonization and/or growth of SiC on ultrathin Si requires further optimization because the processes for surface cleaning and growth of SiC on bulk Si substrates cannot be applied because of the thinness of the substrate layers. Additional carbonization work at higher temperatures has indicated the possibility of converting the entire Si top layer.


2000 ◽  
Vol 622 ◽  
Author(s):  
G.E. Carter ◽  
T. Zheleva ◽  
G. Melnychuck ◽  
B. Geil ◽  
K. Jones ◽  
...  

ABSTRACTPendeo Epitaxy is a type of Lateral Epitaxial Overgrowth (LEO) that instead of using a dielectric buffer layer, uses an etched substrate to grow laterally without an interface layer. We report the first successful growth of 3C-SiC on Si using Pendeo epitaxy. Rectangular stripes of 3C-SiC on (100) Si substrates were fabricated, along both the [110] and [100] directions. Pendeo epi was only observed for columns parallel to [001], indicating a preferred growth facet for Pendeo epi of 3C-SiC on Si. SEM and TEM investigations were performed to assess the material quality of the Pendeo 3C-SiC material. Films were grown for 60 min at 1310°C and film coalescence was achieved without evidence of voids where the growth fronts joined. TEM data indicate not only the growth of vertical and lateral 3C-SiC on the 3C-SiC seed layer but direct nucleation of 3C-SiC on the exposed Si columns side wall and trench bottom, despite the lack of a carbonization procedure. The quality of the Pendeo 3C-SiC film appears to be of high quality indicating that Pendeo epi of 3C-SiC on low-cost, large-diameter Si substrates may prove to be a cost effective way to grow device-grade SiC layers on Si substrates for device applications.


Sign in / Sign up

Export Citation Format

Share Document