Fabrication of Thin-Film Transistors Using PECVD-Grown Carbon Nanotubes and Their Application to Integrated Circuits

2012 ◽  
Vol 1451 ◽  
pp. 159-168
Author(s):  
Takashi Mizutani ◽  
Shigeru Kishimoto

ABSTRACTMedium scale integrated circuits with 108 CNT-TFTs have been fabricated using CNTs grown by plasma enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of CNTs with semiconducting behavior in the FET current–voltage characteristics. High-speed operation with a switching time of 0.51 μs/gate, which is highest in the CNT-TFT integrated circuits to our knowledge, was demonstrated by a 53-stage ring oscillator. Characterization of CNT-TFTs using scanning probe microscopy has also been performed. The island-like structure in the electrical properties of the CNT network was observed even in a high-density CNT network in the subthreshold regime. This was explained by the decrease of the effective number of CNTs which contribute the electrical conduction.

Author(s):  
В.Г. Шенгуров ◽  
Д.О. Филатов ◽  
С.А. Денисов ◽  
В.Ю. Чалков ◽  
Н.А. Алябина ◽  
...  

Abstractn ^+-Ge/ p ^+-Si(001) epitaxial structures are grown by hot-wire chemical vapor deposition from GeH_4 at a low substrate temperature (~325°C). Prototype tunnel diodes allowing for monolithic integration into Si-based integrated circuits are formed based on these structures. Doping of the n ^+-Ge layers with a donor impurity (P) to a concentration of >1 × 10^19 cm^–3 is performed via the thermal decomposition of GaP. Distinct regions of the negative differential resistance are observed in the current–voltage characteristics of tunnel diodes.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

1991 ◽  
Vol 235 ◽  
Author(s):  
Ying Wu ◽  
W. Savin ◽  
T. Fink ◽  
N. M. Ravindra ◽  
R. T. Lareau ◽  
...  

ABSTRACTExperimental analysis and simulation of the formation and electrical characterization of TiSi2/+/p-Si shallow junctions are presented here. The formation of shallow n+-p junction, by ion implantation of As through Ti films evaporated on p-Si substrates followed by Rapid Thermal Annealing (RTA) and conventional furnace annealing has been performed in these experiments. Structural techniques such as Secondary Ion Mass Spec-troscopy (SIMS) and Rutherford Backscattering (RBS) experiments have been employed to characterize these devices. RUMP simulations were used to analyze and interpret the RBS data. Current-voltage characteristics have been simulated using PISCES simulator.


2012 ◽  
Vol 3 ◽  
pp. 722-730 ◽  
Author(s):  
César Moreno ◽  
Carmen Munuera ◽  
Xavier Obradors ◽  
Carmen Ocal

We report on the use of scanning force microscopy as a versatile tool for the electrical characterization of nanoscale memristors fabricated on ultrathin La0.7Sr0.3MnO3 (LSMO) films. Combining conventional conductive imaging and nanoscale lithography, reversible switching between low-resistive (ON) and high-resistive (OFF) states was locally achieved by applying voltages within the range of a few volts. Retention times of several months were tested for both ON and OFF states. Spectroscopy modes were used to investigate the I–V characteristics of the different resistive states. This permitted the correlation of device rectification (reset) with the voltage employed to induce each particular state. Analytical simulations by using a nonlinear dopant drift within a memristor device explain the experimental I–V bipolar cycles.


Author(s):  
Yasuhiro Sugawara ◽  
Yan Jun Li ◽  
Yoshitaka Naitoh ◽  
Masami Kageshima

Sign in / Sign up

Export Citation Format

Share Document