Versatile Metal Oxide Nanowire Devices Achieved via Controlled Doping

2007 ◽  
Vol 1018 ◽  
Author(s):  
Eric Dattoli ◽  
Qing Wan ◽  
Wei Lu

AbstractWe report on studies of field-effect transistor (FET) and transparent thin-film transistor (TFT) devices based on lightly Ta-doped SnO2 nanowires. Uniform device performance was obtained using an in situ doping method, with average field-effect mobilities exceeding 100 cm2/(V•s). Prototype fully-transparent TFT devices on glass substrates showed excellent performance metrics in terms of transconductance and on/off ratio. The combined advantages of SnO2 nanowires: namely a low cost growth process, high electron mobility, and optical transparency; make the system well suited for large-scale transparent electronics on low-temperature substrates.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.


1993 ◽  
Vol 297 ◽  
Author(s):  
Byung Chul Ahn ◽  
Jeong Hyun Kim ◽  
Dong Gil Kim ◽  
Byeong Yeon Moon ◽  
Kwang Nam Kim ◽  
...  

The hydrogenation effect was studied in the fabrication of amorphous silicon thin film transistor using APCVD technique. The inverse staggered type a-Si TFTs were fabricated with the deposited a-Si and SiO2 films by the atmospheric pressure (AP) CVD. The field effect mobility of the fabricated a-Si TFT is 0.79 cm2/Vs and threshold voltage is 5.4V after post hydrogenation. These results can be applied to make low cost a-Si TFT array using an in-line APCVD system.


2021 ◽  
Author(s):  
Xianzhong Yang ◽  
Chao Li ◽  
Zhongti Sun ◽  
Shuai Yang ◽  
Zixiong Shi ◽  
...  

Abstract Zn metal anode has garnered growing scientific and industrial interest owing to its appropriate redox potential, low cost and good safety. Nevertheless, the instability of Zn metal, caused by dendrite formation, hydrogen evolution and side reactions, gives rise to poor electrochemical stability and unsatisfactory cycling life, greatly hampering large-scale utilization. Herein, an in-situ grown ZnSe layer with controllable thickness is crafted over one side of commercial Zn foil via chemical vapor deposition, aiming to achieve optimized interfacial manipulation between aqueous electrolyte/Zn anode. Thus-derived ZnSe overlayer not only prevents water penetration and restricts Zn2+ two-dimensional diffusion, but also homogenizes the electric field at the interface and facilitates favorable (002) plane growth of Zn. As a result, dendrite-free and homogeneous Zn deposition is obtained; side reactions are concurrently inhibited. In consequence, a high Coulombic efficiency of 99.2% and high cyclic stability for 860 cycles at 1.0 mA cm–2 in symmetrical cells is harvested. Meanwhile, when paired with V2O5 cathode, assembled full cell achieves an outstanding initial capacity (200 mAh g–1) and elongated lifespan (a capacity retention of 84% after 1000 cycles) at 5.0 A g–1. Our highly reversible Zn anode enabled by the interfacial manipulation strategy is anticipated to satisfy the demand of industrial and commercial use.


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 926 ◽  
Author(s):  
Yury Kutin ◽  
Nicholas Cox ◽  
Wolfgang Lubitz ◽  
Alexander Schnegg ◽  
Olaf Rüdiger

Here we report an in situ electron paramagnetic resonance (EPR) study of a low-cost, high-stability cobalt oxide electrodeposited material (Co-Pi) that oxidizes water at neutral pH and low over-potential, representing a promising system for future large-scale water splitting applications. Using CW X-band EPR we can follow the film formation from a Co(NO3)2 solution in phosphate buffer and quantify Co uptake into the catalytic film. As deposited, the film shows predominantly a Co(II) EPR signal, which converts into a Co(IV) signal as the electrode potential is increased. A purpose-built spectroelectrochemical cell allowed us to quantify the extent of Co(II) to Co(IV) conversion as a function of potential bias under operating conditions. Consistent with its role as an intermediate, Co(IV) is formed at potentials commensurate with electrocatalytic O2 evolution (+1.2 V, vs. SHE). The EPR resonance position of the Co(IV) species shifts to higher fields as the potential is increased above 1.2 V. Such a shift of the Co(IV) signal may be assigned to changes in the local Co structure, displaying a more distorted ligand field or more ligand radical character, suggesting it is this subset of sites that represents the catalytically ‘active’ component. The described spectroelectrochemical approach provides new information on catalyst function and reaction pathways of water oxidation.


2019 ◽  
Vol 116 (22) ◽  
pp. 10658-10663 ◽  
Author(s):  
Ziyuan Song ◽  
Hailin Fu ◽  
Jiang Wang ◽  
Jingshu Hui ◽  
Tianrui Xue ◽  
...  

Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N-carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials.


2017 ◽  
Vol 13 ◽  
pp. 88-95 ◽  
Author(s):  
Azeem Zulfiqar ◽  
François Patou ◽  
Andrea Pfreundt ◽  
Charalampos Papakonstantinopoulos ◽  
Winnie E. Svendsen ◽  
...  

2021 ◽  
Author(s):  
Jeffrey B Ulmer

DNA vaccines were first discovered more than 30 years ago. Because DNA vaccines result in antigen production in situ (i.e., mimic a virus infection), they elicit broad-based immune responses, including antibodies and T cells. Induction of protective immunity has been established in scores of animal models of infectious and non-infectious diseases. Hundreds of human clinical trials have been conducted demonstrating safety and, in many cases, antigen-specific immune responses. Several animal health vaccines based on DNA have been approved and are in use. Many DNA vaccines are in various stages of human clinical testing, including a few in phase 3 efficacy trials and the recent Emergency Use Authorization of a COVID-19 vaccine, but to date no DNA vaccines have been fully licensed for human use. DNA vaccines are thermostable and amenable to large-scale manufacturing at relatively low cost, hence well-suited for global use, particularly in the developing world. If potency in humans could be achieved, DNA vaccines would have the potential to be a radical innovation that could disrupt the vaccine industry.


2012 ◽  
Vol 1437 ◽  
Author(s):  
Wojciech Knap ◽  
Franz Schuster ◽  
Dominique Coquillat ◽  
Frédéric Teppe ◽  
Benoît Giffard ◽  
...  

ABSTRACTThe concept of THz detection based on excitation of plasma waves in two-dimensional electron gas in Si FETs is one of the most attractive ones, as it makes possible the development of the large-scale integrated devices based on a conventional microelectronic technology including on-chip antennas and readout devices integration. In this work we report on investigations of Terahertz detectors based on low-cost silicon technology field effect transistors. We show that detectors, consisting of a coupling antenna and a n-MOS field effect transistor as rectifying element, are efficient for THz detection and imaging. We demonstrate that in the atmospheric window around 300 GHz, these detectors can achieve a record noise equivalent power below 10 pW/Hz0.5 and a responsivity above 90 kV/W once integrated with on-chip amplifier. We show also that they can be used in a very wide frequency range: from ∼0.2 THz up to 1.1 THz. THz detection by Si FETs pave the way towards high sensitivity silicon technology based focal plane arrays for THz imaging.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1509
Author(s):  
Yuzheng Lu ◽  
Naila Arshad ◽  
Muhammad Sultan Irshad ◽  
Iftikhar Ahmed ◽  
Shafiq Ahmad ◽  
...  

A facile approach for developing an interfacial solar evaporator by heat localization of solar-thermal energy conversion at water-air liquid composed by in-situ polymerization of Fe2O3 nanoparticles (Fe2O3@PPy) deposited over a facial sponge is proposed. The demonstrated system consists of a floating solar receiver having a vertically cross-linked microchannel for wicking up saline water. The in situ polymerized Fe2O3@PPy interfacial layer promotes diffuse reflection and its rough black surface allows Omni-directional solar absorption (94%) and facilitates efficient thermal localization at the water/air interface and offers a defect-rich surface to promote heat localization (41.9 °C) and excellent thermal management due to cellulosic content. The self-floating composite foam reveals continuous vapors generation at a rate of 1.52 kg m−2 h−1 under one 1 kW m−2 and profound evaporating efficiency (95%) without heat losses that dissipates in its surroundings. Indeed, long-term evaporation experiments reveal the negligible disparity in continuous evaporation rate (33.84 kg m−2/8.3 h) receiving two sun solar intensity, and ensures the stability of the device under intense seawater conditions synchronized with excellent salt rejection potential. More importantly, Raman spectroscopy investigation validates the orange dye rejection via Fe2O3@PPy solar evaporator. The combined advantages of high efficiency, self-floating capability, multimedia rejection, low cost, and this configuration are promising for producing large-scale solar steam generating systems appropriate for commercial clean water yield due to their scalable fabrication.


Sign in / Sign up

Export Citation Format

Share Document