Systematic Characterization of DRIE-Based Fabrication Process of Silicon Microneedles

2007 ◽  
Vol 1052 ◽  
Author(s):  
Jochen Held ◽  
Joao Gaspar ◽  
Patrick Ruther ◽  
Matthias Hagner ◽  
Andreas Cismak ◽  
...  

AbstractThis paper reports on the systematic characterization of a deep reactive ion etching based process for the fabrication of silicon microneedles. The possibility of using such microneedles as protruding microelectrodes enabling to electroporate adherently growing cells and to record intracellular potentials motivated the systematic analysis of the influence of etching parameters on the needle shape. The microneedles are fabricated using dry etching of silicon performed in three steps. A first isotropic step defines the tip of the needle. Next, an anisotropic etch increases the height of the needle. Finally, an isotropic etch step thins the microneedles and sharpens their tip. In total, 13 process parameters characterizing this etching sequence are varied systematically. Microneedles with diameters in the sub-micron range and heights below 10 µm are obtained. The resulting geometry of the fabricated microneedles is extracted from scanning electron micrographs of focused ion beam cross sections. The process analysis is based on design-of-experiment methods to find the dominant etch parameters. The dependence of the needle profiles on process settings are presented and interpolation procedures of the geometry with processing conditions are proposed and discussed.

2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


Author(s):  
J. Douglass ◽  
T. D. Myers ◽  
F. Tsai ◽  
R. Ketcheson ◽  
J. Errett

Abstract This paper describes how the authors used a combination of focused ion beam (FIB) microprobing, transmission electron microscopy (TEM), and data and process analysis to determine that localized water residue was causing a 6% yield loss at die sort.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


Author(s):  
Daniel Cavasin ◽  
Abdullah Yassine

Abstract Bond pad metal corrosion was observed during assembly process characterization of a 0.13um Cu microprocessor device. The bond pad consisted of 12kÅ of Al-0.5%Cu atop 9kÅ of Cu, separated by a thin Ta diffusion barrier. The corrosion was first noted after the wafer dicing process. Analysis of the pad surface revealed pitting-type corrosion, consistent with published reports of classic galvanic cell reactions between Al2Cu (theta phase) particles and the surrounding Al pad metal. Analysis of the bond pads on samelot wafers which had not been diced showed higher-thanexpected incidence of hillock and pit hole defects on the Al surface. Statistically designed experiments were formulated to investigate the possibility that the observed pre-saw pad metal defects act as nucleation sites for galvanic corrosion during the sawing process. Analyses of the experimental samples were conducted using optical and scanning electron microscopy, along with focused ion beam deprocessing and energy dispersive X-ray. This paper explores the relationship between the presence of these pre-existing defects and the propensity for the bond pads to corrode during the dicing process, and reviews the conditions under which pit hole defects are formed during the final stages of the Cu-metallized wafer fabrication process. Indications are that strict control of wafer fab backend processes can reduce or eliminate the incidence of such defects, resulting in elimination of bond pad corrosion in the wafer dicing process.


Author(s):  
Qi Chen ◽  
W. D. Griffiths

AbstractIn this work, Mo was added into Al melt to reduce the detrimental effect of double-oxide film defect. An air bubble was trapped in a liquid metal (2L99), served as an analogy for double-oxide film defect in aluminum alloy castings. It was found that the addition of Mo significantly accelerated the consumption of the entrapped bubble by 60 pct after holding for 1 hour. 2 sets of testbar molds were then cast, with 2L99 and 2L99+Mo alloy, with a badly designed running system, intended to deliberately introduce double oxide film defects into the liquid metal. Tensile testing showed that, with the addition of Mo, the Weibull modulus of the Ultimate Tensile Strength and pct Elongation was increased by a factor of 2.5 (from 9 to 23) and 2 (from 2.5 to 4.5), respectively. The fracture surface of 2L99+Mo alloy testbars revealed areas of nitrides contained within bi-film defects. Cross-sections through those defects by Focused Ion Beam milling suggested that the surface layer were permeable, which could be as thick as 30 μm, compared to around 500 nm for the typical oxide film thickness. Transmission Electron Microscopy analysis suggested that the nitride-containing layer consisted of nitride particles as well as spinel phase of various form. The hypothesis was raised that the permeability of the nitride layers promote the reaction between the entrapped atmosphere in the defect and the surrounding liquid metal, reducing the defect size and decreasing their impact on mechanical properties.


Ceramics ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 568-577 ◽  
Author(s):  
Frigan ◽  
Chevalier ◽  
Zhang ◽  
Spies

The market share of zirconia (ZrO2) dental implants is steadily increasing. This material comprises a polymorphous character with three temperature-dependent crystalline structures, namely monoclinic (m), tetragonal (t) and cubic (c) phases. Special attention is given to the tetragonal phase when maintained in a metastable state at room temperature. Metastable tetragonal grains allow for the beneficial phenomenon of Phase Transformation Toughening (PTT), resulting in a high fracture resistance, but may lead to an undesired surface transformation to the monoclinic phase in a humid environment (low-temperature degradation, LTD, often referred to as ‘ageing’). Today, the clinical safety of zirconia dental implants by means of long-term stability is being addressed by two international ISO standards. These standards impose different experimental setups concerning the dynamic fatigue resistance of the final product (ISO 14801) or the ageing behavior of a standardized sample (ISO 13356) separately. However, when evaluating zirconia dental implants pre-clinically, oral environmental conditions should be simulated to the extent possible by combining a hydrothermal treatment and dynamic fatigue. For failure analysis, phase transformation might be quantified by non-destructive techniques, such as X-Ray Diffraction (XRD) or Raman spectroscopy, whereas Scanning Electron Microscopy (SEM) of cross-sections or Focused Ion Beam (FIB) sections might be used for visualization of the monoclinic layer growth in depth. Finally, a minimum load should be defined for static loading to fracture. The purpose of this communication is to contribute to the current discussion on how to optimize the aforementioned standards in order to guarantee clinical safety for the patients.


Sign in / Sign up

Export Citation Format

Share Document