Current Transport Mechanisms for MSM-Photodetectors on ZnO:N Thin Films

2009 ◽  
Vol 1201 ◽  
Author(s):  
Tingfang Yen ◽  
Alan Haungs ◽  
Sung Jin Kim ◽  
Alexander Cartwright ◽  
Wayne A. Anderson

AbstractMetal-semiconductor-metal photodetectors (MSM-PDs) on ZnO:N thin films deposited by radiofrequency (RF) sputtering and with post N+ ion implantation processing were fabricated using a ZnO/Si structure. A 10 times reduction in dark current was observed compared to the devices on an as-deposited ZnO thin film without ion implantation. These MSM-PDs gave performances of a photo-to-dark current ratio of 2030 and responsivity (R) = 2.7 A/W; the pulse response was a 12.3 ns rise time and 15.1 ns fall time using a femto-second pulse. Temperature-dependent current -voltage (I-V-T) characteristics of the MSM-PDs were observed and the space charge limited current (SCLC) theory was applied to determine the current transport mechanisms. In the SCLC region, J∼Vm gave m to determine the current transport mechanism and the value of m changes with temperatures and applied voltages. Current transport is governed by the ZnO structure rather than the electrodes.

2012 ◽  
Vol 26 (31) ◽  
pp. 1250137 ◽  
Author(s):  
M. AMIRHOSEINY ◽  
Z. HASSAN ◽  
S. S. NG ◽  
L. S. CHUAH ◽  
M. A. AHMAD ◽  
...  

We have fabricated photoconductors of indium nitride (InN) grown by radio frequency (RF) sputtering. The InN thin films were deposited on Si (100), Si (110) and Si (111) substrates at room temperature. The Ag/Al contact has been deposited by thermal evaporation in vacuum (10-5 Torr ) and then annealed under the flowing of the nitrogen gas environment in order to relieve stress and also induce any favorable reactions between metals and the semiconductor. Current–voltage (I–V) measurements after heat treatment at 400°C were carried out for samples in dark and illumination conditions. It was found that Ag/Al formed a good ohmic contact on top of InN . In addition, the characteristics of the contacts were significantly affected by the orientation of substrates.


1993 ◽  
Vol 297 ◽  
Author(s):  
Norbert Bernhard ◽  
B. Frank ◽  
B. Movaghar ◽  
G.H. Bauer

Irregularities in the current-voltage-characteristics of a-Si:H based potential barriers have been investigated experimentally, and are discussed theoretically with respect to different transport mechanisms. The investigated samples were different series of double and single barrier a-Si:H - a-Si1-xCx:H - heterostructures, as well as homogeneous samples without heterostructure barrier. Current-voltage-(I-V)-characteristics showing a wide variety of features, from complete smoothness of the curves, to bumps and even accidental step-like switching behaviour, as well as different forms of noise, were recorded at different temperatures. Resonant tunnelling as an explaining transport mechanism for the anomalies was excluded because of inconsistency between experiment and calculations partially including special amorphous features. Instead it is argued that all observed irregularities, i. e. bumps in I-V-curves, switching-like behaviour, and appearance of noise, are related to current transport via trap-assisted tunnelling through locally strongly confined transport paths, leading to the meta-stable formation, change and break-down of conductory filaments.


2006 ◽  
Vol 527-529 ◽  
pp. 811-814 ◽  
Author(s):  
Mariaconcetta Canino ◽  
Antonio Castaldini ◽  
Anna Cavallini ◽  
Francesco Moscatelli ◽  
Roberta Nipoti ◽  
...  

This paper reports on the defects created in a 6H-SiC p-type substrate by a process of ion implantation and a quite low temperature annealing (1300 °C), suitable for the realization of the source/drain regions of a MOSFET because it does not give rise to step bunching phenomena. Current voltage measurements showed the presence of a group of diodes featured by excess current. The effects of defects under the implanted layer on the transport properties of the diodes were investigated by DLTS: four hole traps were detected in all the measured diodes; besides, a broadened peak around 550 K was detected in the diodes that show excess current.


1990 ◽  
Vol 37 (7) ◽  
pp. 1623-1629 ◽  
Author(s):  
W.C. Koscielniak ◽  
J.-L. Pelouard ◽  
R.M. Kolbas ◽  
M.A. Littlejohn

2020 ◽  
Vol 126 (12) ◽  
Author(s):  
Abbas Sabahi Namini ◽  
Mehdi Shahedi Asl ◽  
Gholamreza Pirgholi-Givi ◽  
Seyed Ali Delbari ◽  
Javid Farazin ◽  
...  

AbstractThe present study aims to investigate the effect of (PVP: Sn-TeO2) interfacial layer on the electrical parameters of the Al/p-Si diode. For this aim, (Sn-TeO2) nanostructures were developed by the ultrasound-assisted method, and both their electrical and optical characteristics were investigated by XRD, SEM, EDS, and UV–Vis methods. The bandgap of Sn-TeO2 was found as 4.65 eV from the (αhυ)2 vs (hυ) plot. The main electrical parameters of the Al/p-Si diodes with/ without (PVP: Sn-TeO2) interlayer, such as ideality factor (n), zero-bias barrier height (Φ0), and series resistance (Rs), were calculated by applying and comparing two methods of thermionic emission theory and Cheung’s functions. These results show that the presence of the (PVP: Sn-TeO2 interlayer, along with the increase of Φ0, and the decrease of n and Rs, led to a significant increment in the rectification of MPS when compared to MS diode. The current-transport mechanisms (CTMs) of them were examined through the forward LnIF − LnVF and reverse LnIR − VR0.5 bias currents, and then, the Poole–Frenkel and Schottky field-lowering coefficients (β) were calculated and obtained its value from the theoretical and experimental methods showed that the mechanism of the reverse current of MS and MPS diodes is governing by the Schottky emission and Pool-Frenkel mechanism, respectively.


1989 ◽  
Vol 159 ◽  
Author(s):  
Jin Zhao ◽  
N. M. Ravindra

ABSTRACTAn analysis of the Fowler-Nordheim tunneling (FNT) theory and its application to temperature dependent current-voltage characteristics, of very thin films of SiO2 on silicon, is presented. The final results are believed to provide the most complete examination of FN emission theory and predict the breakdown electric field in thin SiO2 films. The role of the roughness, at the Si-SiO2 interface, in determining the FNT current in these structures is also discussed.


2006 ◽  
Vol 957 ◽  
Author(s):  
Tingfang Yen ◽  
Meiya Li ◽  
Nehal Chokshi ◽  
Sung Jin Kim ◽  
Alexander N. Cartwright ◽  
...  

ABSTRACTIn this paper, ZnO thin films deposited by two methods have been studied. Specifically, the films were grown using i) Laser Assisted Molecular Beam Deposition (LAMBD) and ii) RF sputtering. Subsequent to film deposition, a subset of samples deposited using LAMBD were laser annealed. An additional set of samples (from LAMBD and RF sputtering) were annealed with N2 or forming gas at 600°C for 30mins.After deposition, optical and electrical properties of ZnO thin films have been studied. The application of ZnO to optical devices, including Metal-Semiconductor-Metal Photodetectors (MSM-PD) and solar cells, has been made. Several deposition experiments recently demonstrated that the thin films of RF-ZnO and LAMBD-ZnO have near ZnO parameters including refractive index close to 2, 1:1 stoichiometry ZnO, and 3.3 eV ZnO bandgap. Mixtures of single crystal and polycrystal grains were observed by Transmission Electron Microscopy (TEM) from LAMBD ZnO thin films. MSM current-voltage data show symmetrical photo current behavior. High ratio of photocurrent to dark current, good responsivity and fast pulse response of LAMBD-ZnO MSM were observed. ZnO/Si heterojunction solar cell result has been demonstrated and improvement in the ultraviolet light spectrum of spectral response has been shown in this paper.


2015 ◽  
Vol 3 (7) ◽  
pp. 1468-1472 ◽  
Author(s):  
Thomas Lenz ◽  
Moses Richter ◽  
Gebhard J. Matt ◽  
Norman A. Luechinger ◽  
Samuel C. Halim ◽  
...  

In this work, we report on the electrical characterization of nanoparticular thin films of zinc oxide and aluminum-doped ZnO. Temperature-dependent current–voltage measurements revealed that charge transport is well described by the Poole–Frenkel model.


2001 ◽  
Author(s):  
Fiodor F. Sizov ◽  
Joanna V. Gumenjuk-Sichevskaya ◽  
Yuri G. Sidorov ◽  
Vladimir Vasilev ◽  
Alexandr G. Golenkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document