The Role of Sputter Pressure in Influencing Electrical and Optical Properties of ITO on Glass

2010 ◽  
Vol 1256 ◽  
Author(s):  
Shereen Elhalawaty ◽  
Karthik Sivaramakrishnan ◽  
Theodore David ◽  
Terry L Alford

AbstractThin layers of indium tin oxide (ITO) were deposited onto glass substrates by RF magnetron sputtering with the pressure varying from 6 mTorr to 15 mTorr. The films were annealed in a reducing atmosphere at 500 °C for 30 minutes. Sheet resistance was determined by four-point-probe measurement. Resistivity, mobility, and carrier concentration were obtained by Hall effect measurements. Transmission of the films in the visible spectrum was determined by photospectrometry. The structure of the films was characterized by X-ray diffraction. X-ray photoelectron spectroscopy was used to determine the oxidation state of Sn, which was used to determine the fraction of active tin clusters. The effect of additional anneals was investigated. The results reveal that the lowest resistivity obtained was 1.69×10-4 -cm at 9 mTorr and the highest transmittance of 90% was obtained after a second anneal. However, the second anneal decreased the mobility and conductivity for high sputter pressures.

2014 ◽  
Vol 787 ◽  
pp. 205-209
Author(s):  
Yue Chao Hu ◽  
Zhi Gang Zou ◽  
Ke Feng Cai

CuxBi2Te3films were prepared by chronopotentiometry electro-deposition on indium tin oxide (ITO)-coated glass substrates from an aqueous acidic electrolyte at room temperature. The films were deposited at the same current density but in electrolyte with different Cu2+concentrations: 0.1, 0.25, 0.5, 0.75 or 1mM. The phase composition and morphology of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscope, respectively. The electrical conductivity and Seebeck coefficient of the CuxBi2Te3films were measured after being transferred onto a non-conductive rubberized fabric support. All the films showed n-type conduction with Seebeck coefficient in the range of-63 to-84μV/K, and the electrical conductivity in the range of 90 to 185S/cm. The film deposited from an electrolyte with 0.5mM Cu2+showed higher power factor ~130 μW/K-2m-1.


2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2013 ◽  
Vol 1494 ◽  
pp. 77-82
Author(s):  
T. N. Oder ◽  
A. Smith ◽  
M. Freeman ◽  
M. McMaster ◽  
B. Cai ◽  
...  

ABSTRACTThin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2011 ◽  
Vol 25 (22) ◽  
pp. 2957-2963 ◽  
Author(s):  
FURRUKH SHAHZAD ◽  
SAADAT ANWAR SIDDIQI ◽  
SHI-SHEN YAN ◽  
M. SABIEH ANWAR ◽  
S. M. RAMAY

Bilayers of Sm – Co / Fe have been fabricated on 70 nm Cr buffered Si (100) substrate at an elevated temperature of 650°C by the help of DC and RF magnetron sputtering. Very thin layers (0–0.7 nm) of Ti were introduced at the interface of the Sm – Co and Fe phases. The samples were analyzed by X-ray diffraction (XRD) and alternating gradient magnetometer (AGM). All the samples showed strong exchange coupling and single phase behavior. The rise and fall in magnetization and energy product were observed with increasing Ti interlayer thickness. Energy product (BH) max value was found increased by 44% for 0.2 nm Ti interlayer as compared to the sample without Ti layer at interface.


2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2013 ◽  
Vol 721 ◽  
pp. 33-36 ◽  
Author(s):  
Hong Cheng Pan ◽  
Xue Peng Li ◽  
Wei Hong Liu ◽  
Yan Bin Ren

ZnS thin films were deposited on indium–tin-oxide (ITO) coated glass substrates by a chemical bath deposition method. Then the ZnS/ITO slides were immersed in the solution containing 6 mM phosphate buffer solution (pH 7.4), sodium polyacrylate (0.01% w/w), and 0.24 mM AgNO3 at 37°C for 3 h to growth Ag2S films on the surface of ZnS/ITO slides. The absorption band of Ag2S/ZnS/ITO slide displays a considerably blue-shifted. The X-ray diffraction analysis demonstrated the presence of acanthite Ag2S on the surface of ZnS/ITO slides, which is consistent with the cyclic voltammetic data.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Yoshitaka Nakano ◽  
Shu Saeki ◽  
Takeshi Morikawa

AbstractWe have investigated the effect of N doping into Cu2O films deposited by reactive magnetron sputtering. With increasing N-doping concentration up to 3 at.%, the optical bandgap energy is enlarged from ˜2.1 to ˜2.5 eV with retaining p-type conductivity as determined by optical absorption and Hall-effect measurements. Additionally, photoelectron spectroscopy in air measurements shows an increase in the valence and conduction band shifts with N doping. These experimental results demonstrate possible optical bandgap widening of p-type N-doped Cu2O films, which is a phenomenon that is probably associated with significant structural changes induced by N doping, as suggested from x-ray diffraction measurements.


Sign in / Sign up

Export Citation Format

Share Document