Investigation of Titanium Nitride Synthesized by Ion Beam Enhanced Deposition

1988 ◽  
Vol 128 ◽  
Author(s):  
Zhou Jiankun ◽  
Liu Xianghuai ◽  
Chen Youshan ◽  
Zheng Zhihong ◽  
Huang Wei ◽  
...  

ABSTRACTTitanium nitride films have been synthesized at room temperature by alternate deposition of titanium and bombardment by nitrogen ions with an energy of 40KeV. The component depth profiles and the structure of titanium nitride films were investigated by means of RBS, AES, TEM, XPS and X-ray diffraction. The results showed that titanium nitride films formed by ion beam enhanced deposition (IBED) had columnar structure and were mainly composed of TiN crystallites with random orientation. The oxygen contamination in titanium nitride films prepared by IBED was less than that of the deposited film without nitrogen ion bombardment. It was confirmed that a significant intermixed layer exists at the interface. The thickness of this layer was about 40 nm for the film prepared on iron plate. The mechanical properties of the film have been investigated. The films formed by IBED exhibited high hardness, improved wear resistance and low friction.

2003 ◽  
Vol 792 ◽  
Author(s):  
Shinichiro Aizawa ◽  
Yuka Nasu ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTIrradiation effect of low-energy nitrogen ion beam on amorphous carbon nitride (a-CNx) thin films has been investigated. The a-CNx films were prepared on silicon single crystal substrates by hot carbon-filament chemical vapor deposition (HFCVD). After deposition, the CNx films were irradiated by a nitrogen ion beam with energy from 0.1 to 2.0 keV. Irradiation effect on the film microstructure and composition was studied by SEM and XPS, focusing on the effect of nitrogen ion beam energy. Surface and cross sectional observations by SEM reveal that the as-deposited films show a densely distributed columnar structure and the films change to be a sparsely distributed cone-like structure after irradiation. It is also found that 2.0 keV ions skeltonize the films more clearly than 0.1 kev ions. Depth profiles of nitrogen in the films observed by XPS show that nitrogen absorption into films is more prominent after irradiation by 0.1 keV nitrogen ions than 2.0 keV ions.


1997 ◽  
Vol 504 ◽  
Author(s):  
C. G. Fountzoulas ◽  
J. D. Demaree ◽  
L. C. Sengupta ◽  
J. K. Hirvonen ◽  
D. Dimitrov

ABSTRACTHard, adherent, and low-friction silicon-containing diamond-like carbon coatings (Si-DLC) have been synthesized at room temperature by 40 keV (N+ plus N2+), 50%Ar+/50% (N+ plus N2+), and Ar+ ion beam assisted deposition (IBAD) of a tetraphenyl-tetramethyl-trisiloxane oil on silicon and sapphire substrates. X-ray diffraction analysis indicated that all coatings were amorphous. The average coating wear rate and the average unlubricated steel ball-on-disk friction coefficient, μ, decreased with increasing fraction of nitrogen in the ion beam, along with an increase in the average coating growth rate. The Knoop microhardness and nanohardness values of the coatings synthesized by the mixed argon and nitrogen ion beam were higher than the values for the coatings synthesized with 100% nitrogen or 100%argon ion beams. These friction/wear improvements are tentatively attributed to both increased hardening due to greater penetration and ionization induced hardening by the lighter (N) ions and to the presence of Si02 on the surface of N-bombarded samples.


1992 ◽  
Vol 7 (2) ◽  
pp. 374-378 ◽  
Author(s):  
J-G. Choi ◽  
D. Choi ◽  
L.T. Thompson

A series of molybdenum nitride films were synthesized by implanting energetic nitrogen ions into molybdenum thin films. The resulting films were characterized using x-ray diffraction to determine the effects of nitrogen ion dose (4 × 1016−4 × 1017 N+/cm2), accelerating voltage (50–200 kV), and target temperature (∼298–773 K) on their structural properties. The order of structural transformation with increased incorporation of nitrogen ions into the Mo film can be summarized as follows: Mo → γ−Mo2N → δ−MoN. Nitrogen incorporation was increased by either increasing the dose or decreasing the ion energy. At elevated target temperatures the metastable B1–MoN phase was also produced. In most cases the Mo nitride crystallites formed with the planes of highest atomic density parallel to the substrate surface. At high ion energies preferential orientation developed so that the more open crystallographic directions aligned with the ion beam direction. We tentatively attributed this behavior to ion channeling effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Petr Vlcak ◽  
Frantisek Cerny ◽  
Zdenek Weiss ◽  
Stanislav Danis ◽  
Josef Sepitka ◽  
...  

The ion beam assisted deposition (IBAD) method was chosen for preparing a carbon thin film with a mixing area on a substrate of Ti6Al4V titanium alloy. Nitrogen ions with energy 90 keV were used. These form a broad ion beam mixing area at the interface between the carbon film and the substrate. We investigated the chemical composition by the glow discharge optical emission spectroscopy (GD-OES) method and the phases by the X-ray diffraction (XRD) method. The measured concentration profiles indicate the mixing of the carbon film into the substrate, which may have an effect on increasing the adhesion of the deposited film. The nanohardness and the coefficient of friction were measured. We found that the modified samples had a markedly lower coefficient of friction even after damage to the carbon film, and they also had higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases that arose with ion implantation of nitrogen ions.


2001 ◽  
Vol 15 (28n29) ◽  
pp. 1355-1360 ◽  
Author(s):  
UDAY LANKE ◽  
ANNETTE KOO ◽  
SIMON GRANVILLE ◽  
JOE TRODAHL ◽  
ANDREAS MARKWITZ ◽  
...  

Amorphous GaN films were deposited on various substrates viz. Si (100), quartz, glass, Al, stainless steel and glassy carbon by thermal evaporation of gallium in the presence of energetic nitrogen ions from a Kaufman source. The films were deposited at room temperature and 5 × 10-4 mbar nitrogen partial pressure. The effect of a low energy nitrogen ion beam during the synthesis of films was investigated for energies 40 eV and 90 eV. The N:Ga atomic ratio, bonding state, microstructure, surface morphology, and electrical properties of the deposited a-GaN films were studied by different characterisation techniques. The films are found to be X-ray amorphous in nature, which is confirmed by Raman spectroscopy. Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) indicate the N:Ga atomic ratio in the films. The 400-750 eV energy range is thought to be optimal for the production of single-phase amorphous GaN . The effect of ion-energy on optical, Raman, and electrical conductivity measurements of the films is also presented.


1989 ◽  
Vol 157 ◽  
Author(s):  
Wang Xi ◽  
Zhou Jiankun ◽  
Chen Youshan ◽  
Liu Xianghuai ◽  
Zou Shichang

ABSTRACTA Monte-Carlo computer simulation has been performed to describe, at atomic level, the growth of titanium nitride films formed by ion beam enhanced deposition (IBED). The simulation is based on a random target, fixed free path of moving particles and binary collisions. An alternate process of deposition of titanium atoms and implantation of nitrogen ions is applied instead of the actual continuous and synchronous process of IBED. According to the actual conditions, the adsorption of nitrogen gas, which is leaked out from the ion source, at the fresh titanium layer surface has been considered. In addition, the change of the composition profile and the density profile during film growth is taken into account. It is demonstrated that the width of the intermixed region between the film and substrate increases with the increase of the atomic arrival ratio, R, of implanted nitrogen ions to deposited titanium atoms. When the titanium deposition rate is low, the nitrogen concentration of the film is relatively insensitive to R, indicating that a dominant contribution to the nitrogen concentration is derived from the nitrogen gas leaked out from the ion source. The results obtained in this study are in agreement with the experimental measurements.


1988 ◽  
Vol 128 ◽  
Author(s):  
G. K. Hubler ◽  
D. Vanvechten ◽  
E. P. Donovan ◽  
R. A. Kant

ABSTRACTThe composition of titanium nitride films prepared by ion beam assisted deposition was studied as a function of the partial pressure of N2 gas in the deposition volume, and as a function of the impingement 'ratio of nitrogen ions (500 eV) to evaporated titanium atoms. The amount of nitrogen incorporated from the ambient gas was derived by subtraction of the fraction introduced by the ion beam. It is shown that the primary effects of ion bombardment are an increase in the sticking coefficient and a reduction in the number of active surface adsorption sites.


2020 ◽  
Vol 34 (15) ◽  
pp. 2050163 ◽  
Author(s):  
A. H. Ramezani ◽  
S. Hoseinzadeh ◽  
Zh. Ebrahiminejad

Tantalum bulk were implanted with nitrogen ions at different dose of [Formula: see text] ions/cm2 to [Formula: see text] ions/cm2 and at a energy 30 keV. The implanted samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), microhardness testing, friction coefficient measurements and wear mechanism study. Scanning electron microscopy (SEM) images were used to analyze the friction of samples. The XRD results confirmed that the increasing dose affects the formation of the TaN phase. Based on AFM images, the morphology and surface roughness change proportionally to grain size after implantation. It was found that hardness increases as energy increases. From the friction coefficient measurement, this coefficient decreases as energy increases. For the un-implanted sample, the wear mechanism has abrasion, and with increasing the energy, it shifts to being flake and sticky.


1985 ◽  
Vol 47 ◽  
Author(s):  
H. Windischmann ◽  
J. M. Cavese ◽  
R. W. Collins ◽  
R. D. Harris ◽  
J. Gonzalez-Hernandez

ABSTRACTThe crystallinity for silicon and germanium films deposited by ion beam sputtering (IBS) as a function of substrate temperatures was determined using Raman spectroscopy, spectroscopic ellipsometry, electrical conductivity and x-ray diffraction measurements. The results show that IBS silicon crystallizes between 300–350°C while germanium crystallizes between 20–200°C. Reasonably good agreement is obtained among the four distinctively different characterization techniques in identifying the onset of crystallinity. A direct relationship is observed between the substrate temperature required for crystallization and the log of the operating pressure for various deposition techniques. Energetic particle stimulation during film growth appears to reduce the crystallization temperature at a given operating pressure. Raman data show that the crystallization temperature depends on the deposition rate. A graded structure is observed in films deposited above 300°C, probably due to oxygen contamination.


2001 ◽  
Vol 695 ◽  
Author(s):  
Shuichi Miyabe ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTAluminum nitride (AlN) thin films with columnar and granular structures were prepared by ion-beam assisted deposition method by changing nitrogen ion beam energy, and the effects of the film microstructure and film thickness on their microhardness were studied by using a nano-indentation system with the maximum force of 3 mN. For the columnar structure film of 600 nm in thickness, the microhardness is found to be approximately 24 GPa when the normalized penetration depth to the film thickness is about 0.1. For the granular structure film of 700 nm in thickness, the microhardness is found to be approximately 14 GPa. These results reveal that the microhardness of the AlN films strongly depends on the film microstructure, which can be controlled by regulating the nitrogen ion beam energy.


Sign in / Sign up

Export Citation Format

Share Document