scholarly journals The Effect of Nitrogen Ion Implantation on the Surface Properties of Ti6Al4V Alloy Coated by a Carbon Nanolayer

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Petr Vlcak ◽  
Frantisek Cerny ◽  
Zdenek Weiss ◽  
Stanislav Danis ◽  
Josef Sepitka ◽  
...  

The ion beam assisted deposition (IBAD) method was chosen for preparing a carbon thin film with a mixing area on a substrate of Ti6Al4V titanium alloy. Nitrogen ions with energy 90 keV were used. These form a broad ion beam mixing area at the interface between the carbon film and the substrate. We investigated the chemical composition by the glow discharge optical emission spectroscopy (GD-OES) method and the phases by the X-ray diffraction (XRD) method. The measured concentration profiles indicate the mixing of the carbon film into the substrate, which may have an effect on increasing the adhesion of the deposited film. The nanohardness and the coefficient of friction were measured. We found that the modified samples had a markedly lower coefficient of friction even after damage to the carbon film, and they also had higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases that arose with ion implantation of nitrogen ions.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Petr Vlcak ◽  
Ivan Jirka

The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.


1988 ◽  
Vol 128 ◽  
Author(s):  
Zhou Jiankun ◽  
Liu Xianghuai ◽  
Chen Youshan ◽  
Zheng Zhihong ◽  
Huang Wei ◽  
...  

ABSTRACTTitanium nitride films have been synthesized at room temperature by alternate deposition of titanium and bombardment by nitrogen ions with an energy of 40KeV. The component depth profiles and the structure of titanium nitride films were investigated by means of RBS, AES, TEM, XPS and X-ray diffraction. The results showed that titanium nitride films formed by ion beam enhanced deposition (IBED) had columnar structure and were mainly composed of TiN crystallites with random orientation. The oxygen contamination in titanium nitride films prepared by IBED was less than that of the deposited film without nitrogen ion bombardment. It was confirmed that a significant intermixed layer exists at the interface. The thickness of this layer was about 40 nm for the film prepared on iron plate. The mechanical properties of the film have been investigated. The films formed by IBED exhibited high hardness, improved wear resistance and low friction.


1992 ◽  
Vol 7 (2) ◽  
pp. 374-378 ◽  
Author(s):  
J-G. Choi ◽  
D. Choi ◽  
L.T. Thompson

A series of molybdenum nitride films were synthesized by implanting energetic nitrogen ions into molybdenum thin films. The resulting films were characterized using x-ray diffraction to determine the effects of nitrogen ion dose (4 × 1016−4 × 1017 N+/cm2), accelerating voltage (50–200 kV), and target temperature (∼298–773 K) on their structural properties. The order of structural transformation with increased incorporation of nitrogen ions into the Mo film can be summarized as follows: Mo → γ−Mo2N → δ−MoN. Nitrogen incorporation was increased by either increasing the dose or decreasing the ion energy. At elevated target temperatures the metastable B1–MoN phase was also produced. In most cases the Mo nitride crystallites formed with the planes of highest atomic density parallel to the substrate surface. At high ion energies preferential orientation developed so that the more open crystallographic directions aligned with the ion beam direction. We tentatively attributed this behavior to ion channeling effects.


2001 ◽  
Vol 15 (28n29) ◽  
pp. 1355-1360 ◽  
Author(s):  
UDAY LANKE ◽  
ANNETTE KOO ◽  
SIMON GRANVILLE ◽  
JOE TRODAHL ◽  
ANDREAS MARKWITZ ◽  
...  

Amorphous GaN films were deposited on various substrates viz. Si (100), quartz, glass, Al, stainless steel and glassy carbon by thermal evaporation of gallium in the presence of energetic nitrogen ions from a Kaufman source. The films were deposited at room temperature and 5 × 10-4 mbar nitrogen partial pressure. The effect of a low energy nitrogen ion beam during the synthesis of films was investigated for energies 40 eV and 90 eV. The N:Ga atomic ratio, bonding state, microstructure, surface morphology, and electrical properties of the deposited a-GaN films were studied by different characterisation techniques. The films are found to be X-ray amorphous in nature, which is confirmed by Raman spectroscopy. Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) indicate the N:Ga atomic ratio in the films. The 400-750 eV energy range is thought to be optimal for the production of single-phase amorphous GaN . The effect of ion-energy on optical, Raman, and electrical conductivity measurements of the films is also presented.


2020 ◽  
Vol 34 (15) ◽  
pp. 2050163 ◽  
Author(s):  
A. H. Ramezani ◽  
S. Hoseinzadeh ◽  
Zh. Ebrahiminejad

Tantalum bulk were implanted with nitrogen ions at different dose of [Formula: see text] ions/cm2 to [Formula: see text] ions/cm2 and at a energy 30 keV. The implanted samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), microhardness testing, friction coefficient measurements and wear mechanism study. Scanning electron microscopy (SEM) images were used to analyze the friction of samples. The XRD results confirmed that the increasing dose affects the formation of the TaN phase. Based on AFM images, the morphology and surface roughness change proportionally to grain size after implantation. It was found that hardness increases as energy increases. From the friction coefficient measurement, this coefficient decreases as energy increases. For the un-implanted sample, the wear mechanism has abrasion, and with increasing the energy, it shifts to being flake and sticky.


2008 ◽  
Vol 8 (8) ◽  
pp. 4141-4145 ◽  
Author(s):  
Huang-Chin Chen ◽  
Umesh Palnitkar ◽  
Huan Niu ◽  
Hsiu-Fung Cheng ◽  
I-Nan Lin

Nanocrystalline diamond films prepared by microwave plasma enhanced chemical vapor deposition (MPECVD) were implanted using 110 keV nitrogen ions under fluence ranging from 1013–1014 ions/cm2. Scanning Electron Microscopy (SEM) and Raman spectroscopy were used to analyze the changes in the surface of the films before and after ion implantation. Results show that with nitrogen ion implantation in nanocrystalline diamond film cause to decrease in diamond crystallinity. The field emission measurement shows a sharp increase in current density with increase in dose. The ion implantation also alters the turn on field. It is observed that the structural damage caused by ion implantation plays a significant role in emission behaviour of nanocrystalline diamonds.


2011 ◽  
Vol 108 ◽  
pp. 176-182
Author(s):  
Hui Yuan Ya ◽  
Wei Dong Wang ◽  
Qiu Fang Chen ◽  
Guang Yong Qin ◽  
Zhen Jiao ◽  
...  

The current knowledge of the transcriptome is limited to understand the exact molecular mechanism of the ion-implantation biological effects on cereals. In order to investigating the overall characteristics of the transcript profiles associated with these puzzling biological effects. We used the Agilent Rice Oligo Microarray (4×44K)Genome Array to learn the molecular mechanism in rice responding to ion-implantation. Rice seeds were implanted by the Nitrogen ion beam and their vigor index was investigated at ten days after germination. Total RNAs was extracted from the rice seedlings at 96 hour after germination and hybridized by the genome genechip. The results of measuring of the vigor index showed that lower-dose implantation of the nitrogen ion beam (6×1017 N+/cm2) promoted the vigor index of the rice seedlings and the higher-dose implantation (9×1017 N+/cm2) damaged the rice seedlings because of the smaller vigor index than the control. The analysis of the genechip array showed that there were 982 transcripts expressed differentially (fold change>2 and P value<0.05) including 429 up-regulated transcripts and 553 down-regulated transcripts under the dose3 6×1017 N+/cm2. 30 out of the 553 down-regulated transcripts were involved in 48 pathways. 14 out of these 30 transcripts were associated with more than two interrelated pathways. Os04g0518400 (Phenylalanine ammonia-lyase 2 (PAL; EC 4.3.1.5; down-regulated 3.3 folds; p value=0.005) were involved in 7 pathways, Os07g0446800 (Hexokinase; dwon-regulated 2.8 folds; p value =0.006) were involved in 12 pathways, and Os02g0730000 (Mitochondrial aldehyde dehydrogenase ALDH2a; down-regulated 2.2 folds; p value=0.019) were involved in 13 pathways. These results revealed that down-regulated genes involving important pathways were compatible with the distinct cellular events in response to implantation of low-energy ion beam and supplied the first comprehensive and comparative molecular information for further understanding the mechanism underlying implantation of the low-energy nitrogen ion beam.


2003 ◽  
Vol 792 ◽  
Author(s):  
Shinichiro Aizawa ◽  
Yuka Nasu ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTIrradiation effect of low-energy nitrogen ion beam on amorphous carbon nitride (a-CNx) thin films has been investigated. The a-CNx films were prepared on silicon single crystal substrates by hot carbon-filament chemical vapor deposition (HFCVD). After deposition, the CNx films were irradiated by a nitrogen ion beam with energy from 0.1 to 2.0 keV. Irradiation effect on the film microstructure and composition was studied by SEM and XPS, focusing on the effect of nitrogen ion beam energy. Surface and cross sectional observations by SEM reveal that the as-deposited films show a densely distributed columnar structure and the films change to be a sparsely distributed cone-like structure after irradiation. It is also found that 2.0 keV ions skeltonize the films more clearly than 0.1 kev ions. Depth profiles of nitrogen in the films observed by XPS show that nitrogen absorption into films is more prominent after irradiation by 0.1 keV nitrogen ions than 2.0 keV ions.


1990 ◽  
Vol 201 ◽  
Author(s):  
Kevin M. Hubbard ◽  
Nicole Bordes ◽  
Michael Nastasi ◽  
Joseph R. Tesmer

AbstractWe have investigated the fabrication of thin-film superconductors by Cu-ion implantation into initially Cu-deficient Y(BaF2)Cu thin films. The precursor films were co-evaporated on SrTiO3 substrates, and subsequently implanted to various doses with 400 keV 63Cu2+. Implantations were preformed at both LN2 temperature and at 380°C. The films were post-annealed in oxygen, and characterized as a function of dose by four-point probe analysis, X-ray diffraction, ion-beam backscattering and channeling, and scanning electron microscopy. It was found that a significant improvement in film quality could be achieved by heating the films to 380°C during the implantation. The best films became fully superconducting at 60–70 K, and exhibited good metallic R vs. T. behavior in the normal state.


Author(s):  
H.-S. Zhang ◽  
K. Komvopoulos

Silicon wafers were exposed to an oblique Ar+ ion beam to create arrays of surface ripples. Atomic force microscope (AFM) imaging revealed that the rippled (textured) surfaces exhibited highly anisotropic morphologies. Nanoscale friction experiments performed with different diamond tips illustrated a dependence of the coefficient of friction on tip radius, normal load, and sliding direction. Changes in the coefficient of friction are interpreted in terms of the applied normal load and varying contributions of the adhesion friction mechanism.


Sign in / Sign up

Export Citation Format

Share Document