Microstructural and Property Changes During Short-Term Ageing of Cast Austenitic Stainless Steels

1983 ◽  
Vol 21 ◽  
Author(s):  
M. Hodgkinson ◽  
T.A. Towers

ABSTRACTThe Charpy ν-notch impact properties at -196°C of casts of Type 316 austenitic stainless steel have been compared, after ageing at 650°C for time periods up to 90 minutes. The impact energy of all steels depends on ageing time; the degree of response to ageing depends on original delta ferrite content, which varied from −0.5% to 5.0% in the steels studied. For steels with delta ferrite content in the lower half of this range the impact energy, during ageing, initially decreases to a minimum, subsequently rises to a maximum and finally decreases. Steels with delta ferrite contents near 5% suffer a continuous decrease in impact energy as ageing time increases.Microstructural investigation reveals, during early stages of ageing, the rapid formation of sigma phase, at the ferrite-austenite interphase boundaries. Some delta concurrently transforms to new austenite. Microfractographs indicate a change in the nature of the fracture as ageing progresses. Initially, fractures have large dimples, but as ageing progresses, a finer dimpling appears and extends in area. These dimples contain fine particles, identified mainly as MnS. The variations in impact behaviour are explained on the basis of the structural changes observed.

Author(s):  
Yiren Chen ◽  
Wei-Ying Chen ◽  
Chi Xu ◽  
Xuan Zhang ◽  
Zhangbo Li ◽  
...  

Cast austenitic stainless steels (CASSs) are used in the cooling system of light water reactors (LWRs) for components with complex shapes, such as pump casings, valve bodies, coolant piping, etc. The CF grades of CASS alloys are the cast equivalents of 300-series stainless steels (SSs) and show excellent mechanical properties and corrosion resistance. In contrast to the fully austenitic microstructure of wrought SSs, CASS alloys consist of a dual-phase microstructure of delta ferrite and austenite and are vulnerable to thermal aging embrittlement. The service performance of CASS alloys is of concern after long-term exposure to high-temperature coolant. In this work, we studied the effects of thermal aging and ferrite content on the fracture resistance of CASS alloys. Crack growth rate and fracture toughness J–R curve tests were performed on aged and unaged CASS alloys in simulated light water reactor environments. The impact of thermal aging on the cracking susceptibility was investigated and the effect of ferrite content was evaluated. Significant embrittlement was observed in the CASS alloys after aging at 400°C. To understand the embrittlement mechanism, microstructural characterizations were performed with transmission electron microscope. The thermal aging produced G-phase precipitates and phase separation in the ferrite, but did not affect the microstructure of austenite. Consequently, the ferrite was hardened considerably after thermal aging while the hardness of austenite phase remained unchanged. The difference in hardness created a high incompatible strain at the interface between ferrite and austenite, leading to fracture at phase boundaries.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 773
Author(s):  
Y.H. Guo ◽  
Li Lin ◽  
Donghui Zhang ◽  
Lili Liu ◽  
M.K. Lei

Heat-affected zone (HAZ) of welding joints critical to the equipment safety service are commonly repeatedly welded in industries. Thus, the effects of repeated welding up to six times on the microstructure and mechanical properties of HAZ for AISI 304N austenitic stainless steel specimens were investigated by a Gleeble simulator. The temperature field of HAZ was measured by in situ thermocouples. The as-welded and one to five times repeated welding were assigned as-welded (AW) and repeated welding 1–5 times (RW1–RW5), respectively. The austenitic matrices with the δ-ferrite were observed in all specimens by the metallography. The δ-ferrite content was also determined using magnetic and metallography methods. The δ-ferrite had a lathy structure with a content of 0.69–3.13 vol.%. The austenitic grains were equiaxial with an average size of 41.4–47.3 μm. The ultimate tensile strength (UTS) and yield strength (YS) mainly depended on the δ-ferrite content; otherwise, the impact energy mainly depended on both the austenitic grain size and the δ-ferrite content. The UTS of the RW1–RW3 specimens was above 550 MPa following the American Society of Mechanical Engineers (ASME) standard. The impact energy of all specimens was higher than that in ASME standard at about 56 J. The repeated welding up to three times could still meet the requirements for strength and toughness of welding specifications.


2017 ◽  
Vol 68 (8) ◽  
pp. 1780-1785 ◽  
Author(s):  
Claudiu Sendrea ◽  
Elena Badea ◽  
Alina Adams

New and artificially aged parchments were studied by unilateral NMR and micro DSC. Samples were obtained by exposing new parchments to 80 �C and alternate 40 and 80% relative humidity for increasing times up to 32 days. The impact of accelerated ageing was assessed by measuring both the proton transverse relaxation times (T2eff) and thermodynamic parameters associated with thermal denaturation of fibrillar collagen. Depending on the ageing time, significant structural changes correlated with thermal stability and collagen heterogeneity were observed, in good agreement with changes in phase composition and relaxation times. The results suggest two ageing regimes depending on the balance between the two main processes which drive the behavior of parchments during thermal ageing, i.e. thermally induced cross linking and thermal destabilization and denaturation.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012051
Author(s):  
Srikanth Nune ◽  
N R Dakshina Murthy ◽  
M V Seshagiri Rao

Abstract Self-compacting concrete (SCC) is an extraordinary type of concrete that is extremely flowable and spreads into the formwork without the need of external vibration. In order to attain self-compatibility SCC obliges extensively surplus quantity of fine particles as compared to conventional concrete. Recycled Coarse Aggregate (RCA) obtained by crushing of old concrete is used in the investigational analysis. Nan-Su method is used to design the SCC mixes A and B (M35 and M45). The current experimental study aims to evaluate the impact energy of Recycled Coarse Aggregate (RCA) based self- compacting concrete by replacing with Natural Coarse Aggregate (NCA) (25%, 50%, 75%, and 100%) in unprocessed and processed states for various number of revolutions (500R, 1000R, 1500R, 2000R). Tests were carried out with a constant mass of hammer (16.38 kg). The impact energy determined for the Mixes A and B is compared with respect to replacement level and processing of RCA. The impact energy calculated is maximum for mix-A (1500 and 2000 revolutions) and mix-B (2000 revolutions) at 75% and 100% replacement of RCA respectively. From the experimental results of obtained Coefficient of Variation (CoV) with respect to processing of aggregate, in both the mixes it is observed that RCA in unprocessed state and processed state (1500R) has good Coefficient of Variation. Comparing the results of Coefficient of Variation with respect to replacement level of aggregate it has a very good CoV at 25% replacement level of RCA for both the mixes.


Author(s):  
M. M. Ibrahim ◽  
H. G. Mohamed ◽  
Y. E. Tawfik

Austenitic stainless steels are widely used welding materials in nuclear reactors and power plants because of their high strength, good ductility, excellent corrosion resistance and a reasonable weldability. These properties make austenitic stainless steels attractive candidate materials for use in the fabrication of piping systems, automotive exhaust gas systems and in a variety of equipment associated with the chemical and nuclear power industries. PWHT is a stress relieving process whereby residual stresses are reduced by typically heating to 550–650 °C for a set time depending upon plate thickness. It concerns have emerged about possible effects on the mechanical properties of the base (parent) and weld plates (PM and WM). The 6 mm AISI 304L, 316L, and 347 austenitic stainless steels were used for this work. These welds were produced by SMAW and GTAW techniques using a single vee preparation and multiple weld beads, and welded by various types of consumables. The fracture surfaces of the Charpy V-notch PM and WM (before and after PWHT) samples were examined by SEM. Scanning electron fractographs was critical in this study, in that valuable information regarding the mechanism and nature of failure could be determined. This paper reports work on the impact toughness of the three types of austenitic stainless steels. The parent and weld regions were examined for all types of steels used, and then exposed to temperature in the PWHT range. The effect of exposure to multiple PWHT cycles on these properties is discussed. A decrease in impact energy and fracture toughness with an increase in the number of heat treatments was evident in the parent metal. Similary, the weld metal showed a decrease in impact energy after two PWHT cycles.


2019 ◽  
pp. 79-91 ◽  
Author(s):  
V. S. Nazarov ◽  
S. S. Lazaryan ◽  
I. V. Nikonov ◽  
A. I. Votinov

The article assesses the impact of various factors on the growth rate of international trade. Many experts interpreted the cross-border flows of goods decline against the backdrop of a growing global economy as an alarming sign that indicates a slowdown in the processes of globalization. To determine the reasons for the dynamics of international trade, the decompositions of its growth rate were carried out and allowed to single out the effect of the dollar exchange rate, the commodities prices and global value chains on the change in the volume of trade. As a result, it was discovered that the most part of the dynamics of international trade is due to fluctuations in the exchange rate of the dollar and prices for basic commodity groups. The negative contribution of trade within global value chains in 2014 was also revealed. During the investigated period (2000—2014), such a picture was observed only in the crisis periods, which may indicate the beginning of structural changes in the world trade.


2020 ◽  
Vol 2020 (10) ◽  
pp. 19-33
Author(s):  
Nadiia NOVYTSKA ◽  
◽  
Inna KHLIEBNIKOVA ◽  

The market of tobacco products in Ukraine is one of the most dynamic and competitive. It develops under the influence of certain factors that cause structural changes, therefore, the aim of the article is to conduct a comprehensive analysis of transformation processes in the market of tobacco and their alternatives in Ukraine and identify the factors that cause them. The high level of tax burden and the proliferation of alternative products with a potentially lower risk to human health, including heating tobacco products and e-cigarettes, are key factors in the market’s transformation process. Their presence leads to an increase in illicit turnover of tobacco products, which accounts for 6.37% of the market, and the gradual replacement of cigarettes with alternative products, which account for 12.95%. The presence on the market of products that are not taxed or taxed at lower rates is one of the reasons for the reduction of excise duty revenues. According to the results of 2019, the planned indicators of revenues were not met by 23.5%. Other reasons for non-fulfillment of excise duty revenues include: declining dynamics of the tobacco products market; reduction in the number of smokers; reorientation of «cheap whites» cigarette flows from Ukraine to neighboring countries; tax avoidance. Prospects for further research are identified, namely the need to develop measures for state regulation and optimization of excise duty taxation of tobacco products and their alternatives, taking into account the risks to public health and increasing demand of illegal products.


Author(s):  
Н.Н. Петрищев ◽  
Д.Ю. Семенов ◽  
А.Ю. Цибин ◽  
Г.Ю. Юкина ◽  
А.Е. Беркович ◽  
...  

The purpose. In the study we investigated the impact of the partial blood flow shutdown on structural changes in the rabbit vena cava posterior wall after exposure to high-intensity focused ultrasound (HIFU). Methods. Ultrasound Exposure: frequency of 1.65 MHz, the ultrasound intensity in the focus of 13.6 kW/cm, the area of the focal spot 1 mm, continuous ultrasound, exposure for 3 seconds. Results. Immediately after HIFU exposure all layers of the vein wall showed characteristic signs of thermal damage. A week after exposure structural changes in the intima, media and adventitia was minimal in the part of vessel with preserved blood flow, and after 4 weeks the changes were not revealed. A week after HIFU exposure partial endothelium destruction, destruction of myocytes, disorganization and consolidation of collagen fibers of the adventitia were observed in an isolated segment of the vessel, and in 4 weeks endothelium restored and signs of damage in media and adventitia persisted, but were less obvious than in a week after exposure. Conclusion. The shutdown of blood flow after exposure to HIFU promotes persistent changes in the vein wall. Vein compression appears to be necessary for the obliteration of the vessel, when using HIFU-technology.


Sign in / Sign up

Export Citation Format

Share Document