The Dependence of Defect Density in GexSi1−x/Si Heterostructures Grown by Remote Plasma-Enhanced Chemical Vapor Deposition on Deposition Parameters

1992 ◽  
Vol 263 ◽  
Author(s):  
D. Kinosky ◽  
R. Qian ◽  
T. Hsu ◽  
J. Irby ◽  
A. Mahajan ◽  
...  

ABSTRACTThe density of misfit dislocations in GexSi1−x films has been measured as a function of deposition temperature and r-f plasma power in Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD). The misfit dislocation density decreases as the deposition temperature is lowered from 450°C to 410°C. As the plasma power is increased from 6.6 to 16W, the dislocation density peaks at lOW and then decreases with increasing power.

1991 ◽  
Vol 235 ◽  
Author(s):  
R. Qian ◽  
I. Chung ◽  
D. Kinosky ◽  
T. Hsu ◽  
J. Irby ◽  
...  

ABSTRACTRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been used to grow GexSi1−x/Si heteroepitaxial thin films at low temperatures (∼450°C). In situ RHEED has been used to confirm that smooth, single crystal heteroepitaxial films can be grown by RPCVD. Plan-view and cross-sectional TEM have been employed to study the microstructure of the heteroepitaxial films. Lattice imaging high resolution TEM (HRTEM) has shown perfect epitaxial lattice alignment at the heterojunction interfaces. GexSi1−x/Si films which exceed their CLT's appreciably show dense Moiré fringes under plan-view TEM. The spacings between the fringes have been used to estimate the relaxed lattice constants. In addition to the inhomogeneous strain observed in-XTEM, Selected Area electron Diffraction (SAD) analysis of the interfaces displays two split patterns. The spacings between the diffraction spots have been used to calculate the lattice constants in the epitaxial films in different crystal directions, which agree very well with the prediction by Vegard's law as well as the estimate from plan-view TEM analysis. HRTEM analysis also reveals the crystallographic nature of the interfacial misfit dislocations in the relaxed films.


1991 ◽  
Vol 236 ◽  
Author(s):  
R. Qian ◽  
I. Chung ◽  
D. Kinosky ◽  
T. Hsu ◽  
J. Irby ◽  
...  

AbstractRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been used to grow GexSi1−x/Si heteroepitaxial thin films at low temperatures (∼450°C). In situ RHEED has been used to confirm that smooth, single crystal heteroepitaxial films can be grown by RPCVD. Plan-view and cross-sectional TEM have been employed to study the microstructure of the heteroepitaxial films. Lattice imaging high resolution TEM (HRTEM) has shown perfect epitaxial lattice alignment at the heterojunction interfaces. GexSi1−x/Si films which exceed their CLT's appreciably show dense Moiré fringes under plan-view TEM. The spacings between the fringes have been used to estimate the relaxed lattice constants. In addition to the inhomogeneous strain observed in XTEM, Selected Area electron Diffraction (SAD) analysis of the interfaces displays two split patterns. The spacings between the diffraction spots have been used to calculate the lattice constants in the epitaxial films in different crystal directions, which agree very well with the prediction by Vegard's law as well as the estimate from planview TEM analysis. HRTEM analysis also reveals the crystallographic nature of the interfacial misfit dislocations in the relaxed films.


1991 ◽  
Vol 223 ◽  
Author(s):  
T. Hsu ◽  
R. Qian ◽  
D. Kinosky ◽  
J. Irby ◽  
B. Anthony ◽  
...  

ABSTRACTLow temperature heteroepitaxial growth of Si1−xGex films with mole fractions “x” ranging from 0.07 to 0.72 on Si(100) has been achieved by Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD) at substrate temperatures of 305°C and 450°C. Reflection High Energy Electron Diffraction (RHEED), Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectroscopy (SIMS) were employed to characterize the crystallinity, composition and interfacial sharpness. The Si1−xGex films with thickness below the critical layer thickness were confirmed to have excellent crystallinity with defect density below the sensitivity of TEM analysis (105 cm−2). The Ge profile, from SIMS analysis, in a Si/Si0.8Ge0.2/Si/Si0.82Ge0.18 multilayer structure was found to have a transition width of 30Å/decade, which is the resolution limit of SIMS analysis. There is no Ge segregation observed at the Si/Si1−xGex interface. A superlattice structure with 24 pairs of Si(60Å)/Si0.8Ge0.2 (60Å) layers has been successfully grown by RPCVD at 450°C. From cross-sectional TEM analysis, very low defect densities and abrupt Ge transitions were confirmed.


2001 ◽  
Vol 688 ◽  
Author(s):  
Hiroshi Funakubo ◽  
Kuniharu Nagashima ◽  
Masanori Aratani ◽  
Kouji Tokita ◽  
Takahiro Oikawa ◽  
...  

AbstractPb(Zr,Ti)O3 (PZT) is one of the most promising materials for ferroelectric random access memory (FeRAM) application. Among the various preparation methods, metalorganic chemical vapor deposition (MOCVD) has been recognized as a most important one to realize high density FeRAM because of its potential of high-step-coverage and large-area-uniformity of the film quality.In the present study, pulsed-MOCVD was developed in which a mixture of the source gases was pulsed introduced into reaction chamber with interval. By using this deposition technique, simultaneous improvements of the crystallinity, surface smoothness, and electrical property of the film have been reached by comparing to the conventional continuous gas-supplied MOCVD. Moreover, this film had larger remanent polarization (Pr) and lower leakage current density. This is owing to reevaporation of excess Pb element from the film and increase of migration on the surface of substrate during the interval time.This process is also very effective to decrease the deposition temperature of the film having high quality. In fact, the Pr and the leakage current density of polycrystalline Pb(Zr0.35Ti0.65)O3 film deposited at 415 °C were 41.4 μC/cm2 and on the order of 10−7 A/cm2 at 200 kV/cm. This Pr value was almost the same as that of the epitaxially grown film deposited at 415 °C with the same composition corrected for the orientation difference. This suggests that the polycrystalline PZT film prepared by pulsed-MOCVD had the epitaxial-grade ferroelectric properties even through the deposition temperature was as low as 415 °C. Moreover, large “process window” comparable to the process window at 580 °C, above 150 °C higher temperature and was widely used condition, was achieved even at 395°C by the optimization of the deposition condition.


1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


2021 ◽  
Vol 21 (8) ◽  
pp. 4412-4417
Author(s):  
Jonggeon Lee ◽  
Taemyung Kwak ◽  
Geunho Yoo ◽  
Seongwoo Kim ◽  
Okhyun Nam

In this study, we demonstrated the defect-selective etching and epitaxy technique for defect reduction of a heteroepitaxial chemical vapor deposition (CVD) diamond substrate. First, an 8 nm layer of nickel was deposited on the diamond surface using an e-beam evaporator. Then, defect-selective etching was conducted through an in situ single process using microwave plasma chemical vapor deposition (MPCVD). After defect-selective etching, the diamond layer was overgrown by MPCVD. The defect density measured from the atomic force microscope image decreased from 3.27×108 to 2.02×108 cm−2. The first-order Raman peak of diamond shifted from 1340 to 1336 cm−1, and the full width at half maximum (FWHM) decreased from 9.66 to 7.66 cm−1. Through the defect-selective etching and epitaxy technique, it was confirmed that the compressive stress was reduced and the crystal quality improved.


Sign in / Sign up

Export Citation Format

Share Document