Does 0.1 Micron = MACH 1?

1995 ◽  
Vol 380 ◽  
Author(s):  
R. Fabian Pease

ABSTRACTThe drive to increasingly higher density ultra-large-scale-integration (ULSI) (of electronic circuits) is fuelled primarily by cost; on-chip interconnects are far cheaper than the less dense offchip interconnects. At the same time the escalating cost of an IC factory (‘fab’) is making headlines as it goes through $1B and a large part of this escalation is the cost of high performance lithography tools. The lithographic technology to go below 0.1μm will almost certainly be very different from an extension of today's optical projection and the cost of replacing today's technology will be enormous. A second drawback to higher density is the resistance of narrow interconnects. As a result some people have suggested that this situation is analogous to that of airliner speed which increased over a period of thirty years from about 100 mph to close to 600 mph but has not increased in the last 35 years. Still faster speed was technically possible, and hence was pursued by the military, but is uneconomical for most commercial use. Current technology might take us to 0.1μm which will probably be state of the art 10 years hence so technologies for replacing optical lithography e.g. scanned arrays of proximal probes should be researched now. Other challenges include how to achieve useful interconnect networks employing 50 nm features.

2020 ◽  
Vol 12 (4) ◽  
pp. 64 ◽  
Author(s):  
Qaiser Ijaz ◽  
El-Bay Bourennane ◽  
Ali Kashif Bashir ◽  
Hira Asghar

Modern datacenters are reinforcing the computational power and energy efficiency by assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication architecture and virtualization method with the required features in order to meet the high-end objective. Consequently, in the last decade, academia and industry proposed several virtualization techniques and hardware architectures for addressing resource management, scheduling, adoptability, segregation, scalability, performance-overhead, availability, programmability, time-to-market, security, and mainly, multitenancy. This paper provides an extensive survey covering three important aspects—discussion on non-standard terms used in existing literature, network-on-chip evaluation choices as a mean to explore the communication architecture, and virtualization methods under latest classification. The purpose is to emphasize the importance of choosing appropriate communication architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems are indicated for scientific community as well.


Author(s):  
Hung Kiem Nguyen ◽  
Tu Xuan Tran

The requirements for high performance and low power consumption are becoming more and more inevitable when designing modern embedded systems, especially for the next generation multi-mode multimedia or communication standards. Ultra large-scale integration reconfigurable System-on-Chips (SoCs) have been proposed to achieve not only better performance and lower energy consumption but also higher flexibility and versatility in comparison with the conventional architectures. The unique characteristic of such systems is integration of many types of heterogeneous reconfigurable processing fabrics based on a Network-on-Chip. This paper analyzes and emphasizes the key research trends of the reconfigurable System-on-Chips (SoCs). Firstly, the emerging hardware architecture of SoCs is highlighted. Afterwards, the key issues of designing the reconfigurable SoCs are discussed, with the focus on the challenges when designing reconfigurable hardware fabrics and reconfigurable Network-on-Chips. Finally, some state-of-the-art reconfigurable SoCs are briefly discussed.


2020 ◽  
Author(s):  
Sunbin Hwang ◽  
Minji Kang ◽  
Aram Lee ◽  
Sukang Bae ◽  
Seoung-Ki Lee ◽  
...  

Abstract Electronic textiles have been considered one of the desired device platforms due to their dimensional compatibility with fabrics by weaving them with yarn. However, the existing electronic textile platforms are generally composed of only one type of electronic component with a single function on a fiber substrate because of processing challenges. A precise connecting process between each electronic fiber is essential to configure the desired electronic circuits or systems. Here we present a chip on a fiber, a new electronic fiber platform, by introducing large scale integration of electronic device or circuit components onto a one-dimensional microfiber substrate. The electronic components such as transistors, inverters, ring oscillators, and thermocouples were integrated together onto the outer surface of a fiber substrate with precise semiconductor and electrode patterns. Our results show that the electronic components can be integrated on a single fiber with reliable operation. We evaluate the electronic properties of the chip on a fiber as a multifunctional electronic textile platform by testing their switching and data processing, as well as sensing or transducing units for detecting optical/thermal signals. The demonstration of the chip on a fiber suggests significant proof of concepts for realization of high performance with wearable electronic textile systems.


Significance The trip comes shortly after the International Court of Justice (ICJ) ruled that Somalia can pursue a claim against Kenya over a maritime boundary dispute. The ruling was the latest in a series of foreign relations defeats that have called into question the effectiveness of President Uhuru Kenyatta’s foreign policy. Kenya focuses on building regional support for its military action in Somalia and promoting regional integration through large-scale integration projects, while diversifying its portfolio of international partners and marshalling African criticism of perceived Western hypocrisy. However, a series of challenges, including a fatal attack on the military in Somalia and failure to secure the chair of the African Union (AU) Commission, have undermined confidence in the competence of the Kenyatta government on the international stage. Impacts Fears about corruption and political instability discourage regional neighbours from implementing touted infrastructure plans. Kenya will vigorously pursue the maritime border case as it has already granted hydrocarbon exploration and exploitation rights. Regional security considerations may shift as the military effort in Somalia winds down.


Author(s):  
Liang Guang ◽  
Juha Plosila ◽  
Hannu Tenhunen

Dependability is a primary concern for emerging billion-transistor SoCs (Systems-on-Chip), especially when the constant technology scaling introduces an increasing rate of faults and errors. Considering the time-dependent device degradation (e.g. caused by aging and run-time voltage and temperature variations), self-adaptive circuits and architectures to improve dependability is promising and very likely inevitable. This chapter extensively surveys existing works on monitoring, decision-making, and reconfiguration addressing different dependability threats to Very Large Scale Integration (VLSI) chips. Centralized, distributed, and hierarchical fault management, utilizing various redundancy schemes and exploiting logical or physical reconfiguration methods, are all examined. As future research directions, the challenge of integrating different error management schemes to account for multifold threats and the great promise of error resilient computing are identified. This chapter provides, for chip designers, much needed insights on applying a self-adaptive computing paradigm to approach dependability on error-prone, cost-sensitive SoCs.


Author(s):  
Yukihiro Nakagawa ◽  
Takeshi Shimizu ◽  
Takeshi Horie ◽  
Yoichi Koyanagi ◽  
Osamu Shiraki ◽  
...  

The use of virtualization technology has been increasing in the IT industry to consolidate servers and reduce power consumption significantly. Virtualized commodity servers are scaled out in the data center and increase the demand for bandwidth between servers. Therefore, a high performance switch is required. The shared-memory switch is the best performance/cost switch architecture, but it is challenging to satisfy the requirements on the memory bandwidth in a high speed network. In addition, it is challenging to handle variable-length frames in Ethernet. This chapter describes the main challenges in Ethernet switch designs and then energy-aware switch designs, including switch architecture and high speed IO interface. As implementation examples, this chapter also describes a single-chip switch Large Scale Integration (LSI) embedded with high-speed IO interfaces and 10-Gigabit Ethernet (10GbE) switch blade equipped with the switch LSI. The switch blade delivers 100% more performance per watt than other 10GbE switch blades in the industry.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 235-242 ◽  
Author(s):  
Arulmurugan Azhaganantham ◽  
Murugesan Govindasamy

High temperature occurs in testing of complex System-on-Chip designs and it may become a critical concern to be carefully taken into account with continual development in Very Large Scale Integration technology. Peak temperature significantly affects the reliability and the performance of the chip. So it is essential to minimize the peak temperature of the chip. Heat generation by power consumption and heat dissipation to the surrounding blocks are the two prominent factors for the peak temperature. Power consumption can be minimized by a careful mapping of don’t cares in precomputed test set. However, it does not provide the solution to peak temperature minimization because the non-uniformity in spatial power distribution may create localized heating event called “hotspot.” The peak temperature on the hotspot is minimized by Genetic Algorithm–based don’t care filling technique that reduces the non-uniformity in spatial power distribution within the circuit under test while maintaining the overall power consumption at a lower level. Experimental results on ISCAS89 benchmark circuits demonstrate that 6%–28% peak temperature reduction can be achieved.


Sign in / Sign up

Export Citation Format

Share Document