Characterization of New SBT Sol System and its thin film on the Platinum Electrode for Fram Application

1997 ◽  
Vol 493 ◽  
Author(s):  
YongSoo Choi ◽  
WooSik Kim ◽  
ChangEun Kim ◽  
WhanSik Yoo ◽  
BaeYeon Kim ◽  
...  

ABSTRACTStable SBT sols for FRAM application were made from Sr-isopropoxide, Bi-acetate, and Ta-ethoxide with 2-ethoxyethanol as a solvent and chelating agent, TEA. The sol were spin-on coated on the Pt /Ti/SiO2/Si substrate. From the IR and DTA/TGA, the 2-ethoxyethanol -triethanolamine sol system is quite stable against aging. 5% excess Bi added sol and 800°C heat treatment of the thin film revealed the most crystallinity. There is a change in the orientation of thin film above 800°C heat treatment from c-axis to(105). The average grain size of thin film is very small, i.e., 40 nm at 800°C, and it has very narrow distributions, and the thickness of the coating were about 100nm, which would promise smaller electrode area and higher yield.

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2007 ◽  
Vol 336-338 ◽  
pp. 505-508
Author(s):  
Cheol Jin Kim ◽  
In Sup Ahn ◽  
Kwon Koo Cho ◽  
Sung Gap Lee ◽  
Jun Ki Chung

LiNiO2 thin films for the application of cathode of the rechargeable battery were fabricated by Li ion diffusion on the surface oxidized NiO layer. Bi-axially textured Ni-tapes with 50 ~ 80 μm thickness were fabricated using cold rolling and annealing of Ni-rod prepared by cold isostatic pressing of Ni powder. Surface oxidation of Ni-tapes were conducted using tube furnace or line-focused infrared heater at 700 °C for 150 sec in flowing oxygen atmosphere, resulted in NiO layer with thickness of 400 and 800 μm, respectively. After Li was deposited on the NiO layer by thermal evaporation, LiNiO2 was formed by Li diffusion through the NiO layer during subsequent heat treatment using IR heater with various heat treatment conditions. IR-heating resulted in the smoother surface and finer grain size of NiO and LiNiO2 layer compared to the tube-furnace heating. The average grain size of LiNiO2 layer was 0.5~1 μm, which is much smaller than that of sol-gel processed LiNiO2. The reacted LiNiO2 region showed homogeneous composition throughout the thickness and did not show any noticeable defects frequently found in the solid state reacted LiNiO2, but crack and delamination between the reacted LiNiO2 and Ni occurred as the reaction time increased above 4hrs.


2005 ◽  
Vol 475-479 ◽  
pp. 3985-3988
Author(s):  
Chun Gen Zhou ◽  
Na Wang ◽  
Sheng Kai Gong ◽  
Hui Bin Xu

The as-sprayed zirconia coating had an average grain size of 67 nm. Thermal treatment results showed that the grains of the nanostructured coating grew slightly below 900°C, whereas over 1000°C the gains grew rapidly. The thermal diffusivity of the coating increases with increasing heat-treatment temperatures.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


2020 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Kavian O. Cooke ◽  
Tahir I. Khan ◽  
Muhammad Ali Shar

Heat-treatment is a frequently used technique for modifying the physical and chemical properties of materials. In this study, the effect of heat-treatment on the mechanical properties, thermal stability and surface morphology of two types of electrodeposited coatings (pure-Ni and Ni/Al2O3) were investigated. The XRD analyses showed that the crystal structure of the as-deposited coating changes from slightly amorphous to crystalline as the heat-treatment temperature increases. The heat-treatment of both the pure-Ni and the Ni/Al2O3 coating caused an increase of the grain size within the coatings. However, the unreinforced Ni coating experienced a faster growth rate than the Ni/Al2O3 coating, which resulted in a larger average grain size. The temperature-driven changes to the microstructure of the coatings caused a reduction in the hardness and wear resistance of the coatings. The presence of nanoparticles within the Ni/Al2O3 coating can successfully extend the operational temperature range of the coating to 473 K by pinning grain boundaries.


2006 ◽  
Vol 309-311 ◽  
pp. 325-328 ◽  
Author(s):  
Gültekin Göller ◽  
Ipek Akin ◽  
A. Kahraman ◽  
Erdem Demirkesen ◽  
M. Urgen

In this study; in-vitro bioactivity characterization of machinable glass-ceramics having 85 wt% sodium mica (NaMg3AlSi3O10F2) and 15 wt% fluoroapatite has been carried out. Two different heat treatment procedures are applied to the machinable glass-ceramics. The first one is nucleation at 610°C for 2 hours and crystallization at 1000°C for 3 hours and the second is nucleation at 610°C for 2 hours and crystallization at 1000°C for 4 hours. It is observed that increasing the crystallization time to 4 hours resulted in the increasing the formation of hydroxyapatite layer on surface. According to the microstructural investigations, the morphology of the precipitated crystals are different. In addition, the speed of the precipitation of hydroxyapatite is higher in glass-ceramic B than A. Thin film XRD analysis supports these results.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.


2011 ◽  
Vol 284-286 ◽  
pp. 1559-1563 ◽  
Author(s):  
Jian Li Wang ◽  
Jian Ping Li ◽  
Li Min Wang ◽  
Li Dong Wang

Mg-5Al-0.3Mn-1Ce alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and hot-rolled with total thickness reduction of 61% after four passes. Texture, microstructure and mechanical properties of the studied alloy were investigated. Results showed that the as-cast sample was mainly composed of a-Mg, Mg17Al12and Al11Ce3phases. Average grain size of the as-cast sample was about 500 μm. After hot-rolling, average grain size was greatly refined to about 20 μm. Further more, the long acicular Al11Ce3phase was smashed to small pieces. Tensile test results demonstrated that ultimate tensile strength and yield strength of the hot-rolled sample were improved by 65.2% and 165% respectively compared with those of the as-cast sample. Strength enhancement was attributed to grain refining strengthening and dislocation strengthening mechanisms.


2016 ◽  
Vol 852 ◽  
pp. 1080-1086
Author(s):  
Xiao Xin Zhang ◽  
Jian Jun Xie ◽  
Ying Shi ◽  
Ling Cong Fan ◽  
De Bao Lin ◽  
...  

Lutetium oxyorthosilicate (Lu2SiO5, LSO) doped with Pr3+ was synthesized on cleaned silicon (111) substrates by sol-gel route with the spin-coating technique. XRD patterns indicated that the films were crystallized into A-type LSO phase at 1000 °C, followed by a phase transition to B-type LSO occurred at 1100 °C. SEM observations revealed that the surface of the films was smooth, homogeneous and crack-free. When the sintering temperature was 1000 °C, the average grain size of the crystal particles was 100-200 nm and the thickness of the thin film was about 380 nm when the coating layer number up to 10. While the sintering temperature was 1100 °C, the average grain size of the crystal particles was 200-300 nm and the thickness of the thin film was about 320 nm also 10 layers. PL spectra showed when under 1000 °C, the quenching concentration of Pr3+ was 0.3 mol%, the characteristic emission peaks was 289 nm and 340 nm and the dominant decay time was 4.64 ns; while under 1100 °C, the quenching concentration of Pr3+ was 0.4 mol%, the characteristic emission peaks was 280 nm and 320 nm and the dominant decay time was 2.61 ns.


Sign in / Sign up

Export Citation Format

Share Document