The synthesis of novel polynuclear organogold complexes

1998 ◽  
Vol 546 ◽  
Author(s):  
J. Thomson ◽  
A. H. Fzea ◽  
J. Lobban ◽  
P. G. McGivern ◽  
J. A. Cairns ◽  
...  

SummaryThe synthesis and peirastic characterisation of two new organogold(III) complexes with a high molar ratio of gold content is described. The proposed formulae for the complexes in the present study are [C2H2Au4F8(PPh3)4]n and [C2H2Au4F8(NCCH3)4]n (Figure 1). These complexes were found to be stable to the atmosphere. The aim of this work was to demonstrate that such materials have a high metal to ligand ratio, suitable for physical vapour deposition process (PVD) and, hence, can be used as precursors for the deposition of pure metallic features. Physical and chemical characterisation methods were employed to obtain information about i) the structures, ii) the thermal and chemical stability, iii) the volatility and iv) the adhesion of these materials to specific substrates. These include n.m.r. (1H, 19F, 13C and 31P) IR spectroscopy, EDX (Energy Dispersive X-ray analysis), DSC ( Differential Scanning Calorimetry), TGA (Thermogravimetric Analysis), Powder X-ray Diffraction and Electron Microscopy (Scanning, Transmission and Atomic Force).

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


2013 ◽  
Vol 20 (01) ◽  
pp. 1350006 ◽  
Author(s):  
PARTHASARATHI BERA ◽  
H. SEENIVASAN ◽  
K. S. RAJAM

Co–W alloy coatings were deposited with direct current (DC) and pulse current (PC) electrodeposition methods using gluconate bath at pH5 and characterized by X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). DSC studies hint at the possibility of formation of metallic glasses. Detailed XPS studies of these alloy coatings have been carried out to compare elemental states and composition of Co and W in DC and PC electrodeposited alloys. DC-plated alloy has significant amount of Co and W metal along with their respective oxidized species. In contrast, mainly oxidized metals are present in the following layers of as-deposited coatings prepared with PC plating. Concentration of Co metal is observed to increase during sputtering, whereas there is no change in W6+ concentration. Microhardness measurement of all the Co–W coatings shows higher hardness compared to Co metal and 1:1 and 1:4 PC electrodeposited coatings show little higher hardness compared to 1:2 PC electrodeposited coating.


2018 ◽  
Vol 18 (1) ◽  
pp. 18 ◽  
Author(s):  
Normyzatul Akmal Abd Malek ◽  
Hamizah Mohd Zaki ◽  
Mohammad Noor Jalil

The interaction of Active Pharmaceutical Ingredient (API) with other compounds will affect drugs stability, toxicity, modified dissolution profiles or may form a new compound with the different crystal structure. Acetaminophenol (APAP), the most common drug used widely (also known as Panadol) was mixed with Naringenin (NR) to glance for a new phase of interactions leading to new compound phase. The amide-acid supramolecular heterosynthon; N-H…O interaction between acid and the respective base were observed in the APAP-NR mixture blends. The interaction was prepared by the binary interaction from neat grinding and liquid-assisted grinding techniques at a different stoichiometry of binary mixture ratio of APAP-NR which were 1:1, 1:2 and 2:1 molar ratio. The interaction was estimated using Group Contribution Method (GCM) and physicochemical properties were characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), powder X-ray diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The GCM calculation gave good interaction strength at 212.93 MPa1/2. The ATR-FTIR, DSC and PXRD results obtained revealed an interaction with new phase formed.


2014 ◽  
Vol 937 ◽  
pp. 70-73
Author(s):  
Di Wu ◽  
Jun Zhang ◽  
Xing Wang Wen ◽  
Hui Ling Liu

Sewage sludge was tested as component for producing glass-ceramics with the addition of analytic reagent CaO to solve the sewage sludge disposal problems. The effect of alkalinity (Ak=mCaO/mSiO2) on the characteristics of the glass-ceramics was investigated. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to investigate thermal behavior and crystalline phase of the samples. It was found that the degree and characteristics of crystals in vitrified sludge significantly correlate to the alkalinity of the raw materials. The glass-ceramics with Ak = 0.36 possessed the best physical and chemical properties.


2019 ◽  
Vol 126 (4) ◽  
pp. 515
Author(s):  
С.К. Евстропьев ◽  
Л.Л. Лесных ◽  
Н.В. Никоноров ◽  
А.В. Караваева ◽  
Е.В. Колобкова ◽  
...  

AbstractThe structure and properties of transparent ZnO–SnO_2 photocatalytic coatings formed on glass surfaces by the polymer–salt method are studied. The physical and chemical processes occurring during formation of the coatings are studied by differential scanning calorimetry and X-ray diffraction analysis. The structure and optical properties of the obtained thin oxide films are studied by optical spectroscopy, photoluminescence, and scanning electron microscopy. It is shown that the polymer–salt method allows formation of homogeneous and transparent ZnO–SnO_2 coatings consisting of oxide nanoparticles completely covering the glass substrate surface. It is found that the formed transparent ZnO–SnO_2 coatings have high photocatalytic properties and can generate singlet oxygen under action of UV radiation.


2020 ◽  
Vol 993 ◽  
pp. 776-784
Author(s):  
Ze Xin Wu ◽  
Wen Zhe Ma ◽  
Lei Wang ◽  
Chang Lin Yao ◽  
Shuang Song ◽  
...  

Telmisartan (TEL), a type of antihypertensive drug, has poor solubility. To improve its solubility, the co-amorphous telmisartan with pimelic acid (PA) in molar ratio of 1:1 and 2:1, respectively, were obtained using a liquid-assisted grinding method. The co-amorphous system was characterized by the powder X-ray diffraction and differential scanning calorimetry. The molecular interactions of the co-amorphous were studied by the infrared spectra. After the formation of co-amorphous, the solubility of TELwas much improved, and the apparent solubility values were approximately 9-15 times as high as that of crystalline TEL. Moreover, the co-amorphous TEL-PA was stored under 25 °C/20% RH for a month without any evidence of conversion by powder X-ray diffraction analysis.


Author(s):  
Rosli Hussin ◽  
Ng Siang Leong ◽  
Nur Shahira Alias

Generally, the luminescent properties of phosphors are strongly dependent on the crystal structure of the host materials. Finding a stable crystal structure, high physical and chemical stability of crystalline matrix is still a critical step to obtain rare-earth ions or transition metal ions-doped persistent phosphor with excellent properties. The glassceramic materials based on cadmium tellurite developed for stable host phosphor is reported in this paper. The structure of TeO2 and CdO-TeO2 system has been investigated by means of FT-Raman, Infrared (IR) spectroscopy and x-ray diffraction (XRD) spectroscopies. Cadmium tellurite system were prepared with the compositions of xCdO-(1-x)TeO2 with 0.1 x 0.5 in percent molar ratio, doped with 1% mol MnO2, using solid state method. The x-ray diffraction measurement results showed that the phase in the cadmium tellurite system matched quite well with the standard ICDD files, indicating that the phases present in this sample appeared to be a phase of -TeO4 trigional bipyramid (tbp), CdTe2O5 and CdTeO3. The Raman and Infrared spectra show that the structures are mainly builds by TeO4 (tbp) groups,TeO3+1 trigional pyramid (tp) and TeO3 (tp), while Cd2+ ions play as network modifiers. As addition concentration of CdO increases, TeO4 (tbp) groups progressively change polymerized framework structure in TeO4 (tbp) into TeO3+1 trigional pyramid (tp) and TeO3 (tp). On the contrary, the addition of 1 mol % MnO2 into the sample did not giving any effect on the structural of the final samples.


2020 ◽  
pp. 096739112097627
Author(s):  
Dalila Smail ◽  
Saliha Chaoui

In this study low-density polyethylene (LDPE)/thermoplastic starch (TPS)/nanoclay (O-Mt) nanocomposites were prepared by a melt blending process using a Brabender mixer. Dicumyl peroxide (DCP) and nanoclay (O-Mt) were studied to improve interfacial adhesion and to obtain the various desired properties of the nanocomposites. The structure and properties of the materials were studied by X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and by tensile and Izod impact tests. X-ray diffraction analysis of the nanocomposites showed that the characteristic peaks of the clay were shifted to the lower angles, indicating an intercalated structure in the presence of dicumyl peroxide (DCP). The TGA curve indicated an improvement in the thermal stability of the materials with the amount of silicate and DCP. The mechanical properties of the materials were improved as a consequence of the increase in phase adhesion which gave an improvement in crystallinity confirmed by DSC. In addition, the impact strength of the modified materials was improved compared to the original materials. A modification of morphology as well as roughness was demonstrated by SEM and AFM.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 234 ◽  
Author(s):  
Daniela Nunes ◽  
Ana Pimentel ◽  
Mariana Matias ◽  
Tomás Freire ◽  
A. Araújo ◽  
...  

The present study reports the production of upconverter nanostructures composed by a yttrium oxide host matrix co-doped with ytterbium and europium, i.e., Y2O3:Yb3+/Eu3+. These nanostructures were formed through the dissociation of yttrium, ytterbium and europium oxides using acetic, hydrochloric and nitric acids, followed by a fast hydrothermal method assisted by microwave irradiation and subsequent calcination process. Structural characterization has been carried out by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM) both coupled with energy dispersive X-ray spectroscopy (EDS). The acid used for dissociation of the primary oxides played a crucial role on the morphology of the nanostructures. The acetic-based nanostructures resulted in nanosheets in the micrometer range, with thickness of around 50 nm, while hydrochloric and nitric resulted in sphere-shaped nanostructures. The produced nanostructures revealed a homogeneous distribution of the doping elements. The thermal behaviour of the materials has been investigated with in situ X-Ray diffraction and differential scanning calorimetry (DSC) experiments. Moreover, the optical band gaps of all materials were determined from diffuse reflectance spectroscopy, and their photoluminescence behaviour has been accessed showing significant differences depending on the acid used, which can directly influence their upconversion performance.


2015 ◽  
Vol 22 (01) ◽  
pp. 1550011 ◽  
Author(s):  
PARTHASARATHI BERA ◽  
M. DINESH KUMAR ◽  
CHINNASAMY ANANDAN ◽  
C. SHIVAKUMARA

Ni – W alloy coatings are electrodeposited with direct and pulse current using gluconate bath at pH5. Effects of direct current (DC) and pulse current (PC) on structural characteristics of the coatings have been investigated by energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). EDXS shows that W contents are 13.3 and 12.6 at.% in DC and PC (10:40) Ni – W coatings, respectively. FESEM analysis exhibits the homogeneous coarse nodular morphology in DC plated deposits. DSC studies reveal that Ni – W coatings are thermally stable up to 400°C. XPS studies demonstrate that DC plated coating has significant amount of Ni and W in elemental form along with their respective oxidized species. In contrast, mainly oxidized metals are present in the as-deposited coatings prepared with PC plating. The microhardness of pulse current (100:400) deposited Ni – W coating is about 750 HK that is much higher than DC plated coating (635 HK). Heat treatment of the deposits carried out at different temperatures show a significant increase in microhardness which can be comparable with hard chromium coatings.


Sign in / Sign up

Export Citation Format

Share Document