Evaluation of Copper Penetration in Low-κ Polymer Dielectrics by Bias-Temperature Stress

1999 ◽  
Vol 564 ◽  
Author(s):  
Alvin L. S. Loke ◽  
S. Simon Wong ◽  
Niranjan A. Talwalkar ◽  
Jeffrey T. Wetzel ◽  
Paul H. Townsend ◽  
...  

AbstractThe industry is strongly interested in integrating low–κ dielectrics with Damascene copper. Otherwise, with conventional materials, interconnects cannot continue to scale without limiting circuit performance. Integration of copper wiring with silicon dioxide (oxide) requires barrier encapsulation since copper drifts readily in oxide. An important aspect of integrating copper wiring with low-K dielectrics is the drift behavior of copper ions in these dielectrics, which will directly impact the barrier requirements and hence integration complexity.This work evaluates and compares the copper drift properties in six low-κ organic polymer dielectrics: parylene-F; benzocyclobutene; fluorinated polyimide; an aromatic hydrocarbon; and two varieties of poly(arylene ether). Copper/oxide/polymer/oxide/silicon capacitors are subjected to bias-temperature stress to accelerate penetration of copper from the gate electrode into the polymer. The oxide-sandwiched dielectric stack is used to overcome interface instabilities occurring when a low-κ dielectric is in direct contact with either the gate metal or silicon substrate. The copper drift rates in the various polymers are estimated by electrical techniques, including capacitance- voltage, current-voltage, and current-time measurements. Results correlate well with timeto- breakdown obtained by stressing the capacitor dielectrics. Our study shows that copper ions drift readily into fluorinated polyimide and poly(arylene ether), more slowly into parylene-F, and even more slowly into benzocyclobutene. A qualitative comparison of the chemical structures of the polymers suggests that copper drift in these polymers may possibly be retarded by increased crosslinking and enhanced by polarity in the polymer.

1999 ◽  
Vol 565 ◽  
Author(s):  
Alvin L. S. Loke ◽  
S. Simon Wong ◽  
Niranjan A. Talwalkar ◽  
Jeffrey T. Wetzel ◽  
Paul H. Townsend ◽  
...  

AbstractThe industry is strongly interested in integrating low-κ dielectrics with Damascene copper. Otherwise, with conventional materials, interconnects cannot continue to scale without limiting circuit performance. Integration of copper wiring with silicon dioxide (oxide) requires barrier encapsulation since copper drifts readily in oxide. An important aspect of integrating copper wiring with low-κ dielectrics is the drift behavior of copper ions in these dielectrics, which will directly impact the barrier requirements and hence integration complexity.This work evaluates and compares the copper drift properties in six low-κ organic polymer dielectrics: parylene-F; benzocyclobutene; fluorinated polyimide; an aromatic hydrocarbon; and two varieties of poly(arylene ether). Copper/oxide/polymer/oxide/silicon capacitors are subjected to bias-temperature stress to accelerate penetration of copper from the gate electrode into the polymer. The oxide-sandwiched dielectric stack is used to overcome interface instabilities occurring when a low-κ dielectric is in direct contact with either the gate metal or silicon substrate. The copper drift rates in the various polymers are estimated by electrical techniques, including capacitance-voltage, current-voltage, and current-time measurements. Results correlate well with timeto-breakdown obtained by stressing the capacitor dielectrics. Our study shows that copper ions drift readily into fluorinated polyimide and poly(arylene ether), more slowly into parylene-F, and even more slowly into benzocyclobutene. A qualitative comparison of the chemical structures of the polymers suggests that copper drift in these polymers may possibly be retarded by increased crosslinking and enhanced by polarity in the polymer.


2002 ◽  
Vol 731 ◽  
Author(s):  
Jang-Yeon Kwon ◽  
Ki-Su Kim ◽  
Young-Chang Joo ◽  
Ki-Bum Kim

AbstractIn order to develop a reliable interconnect integration scheme by using Cu in ultra large scale integrated devices (ULSI), the evolutions of the concentration profile of copper ions in SiO2 was simulated under bias temperature stress (BTS) test. Diffusion equation was solved numerically in two electric field modes. One is constant electric field mode where copper drift was simulated with the assumption that electric field is constant within SiO2 film. In variable electric field mode, simulation was carried out considering the variation of electric field in SiO2 due to copper ions. The diffusion of copper ions in variable electric field mode is slower than that in constant electric field mode, because copper ions in SiO2 reduce electric field near the interface between Cu and SiO2. Flatband voltage shift ) (ΔVFB increases parabolically as BTS time increases in constant electric field mode. However, it has linear relation with BTS time in variable electric field mode, which is typically observed in experiments.


1998 ◽  
Vol 511 ◽  
Author(s):  
S. Simon Wong ◽  
Alvin L. S. Loke ◽  
Jeffrey T. Wetzel ◽  
Paul H. Townsend ◽  
Raymond N. Vrtis ◽  
...  

ABSTRACTThe recent demonstrations of manufacturable multilevel Cu metallization have heightened interest to integrate Cu and low-K dielectrics for future integrated circuits. For reliable integration of both materials, Cu may need to be encapsulated by barrier materials since Cu ions (Cu+) might drift through low-K dielectrics to degrade interconnect and device integrity. This paper addresses the use of electrical testing techniques to evaluate the Cu+ drift behavior of low-K polymer dielectrics. Specifically, bias-temperature stress and capacitance-voltage measurements are employed as their high sensitivities are well-suited for examining charge instabilities in dielectrics. Charge instabilities other than Cu+ drift also exist. For example, when low-K polymers come into direct contact with either a metal or Si, interface-related instabilities attributed to electron/hole injection are observed. To overcome these issues, a planar Cu/oxide/polymer/oxide/Si capacitor test structure is developed for Cu+ drift evaluation. Our study shows that Cu+ ions drift readily into poly(arylene ether) and fluorinated polyimide, but much more slowly into benzocyclobutene. A thin nitride cap layer can prevent the penetration.


2009 ◽  
Vol 53 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Z. Tang ◽  
M.S. Park ◽  
S.H. Jin ◽  
C.R. Wie

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.


2003 ◽  
Vol 42 (Part 1, No. 10) ◽  
pp. 6384-6389 ◽  
Author(s):  
Hirotaka Nishino ◽  
Takuya Fukuda ◽  
Hiroshi Yanazawa ◽  
Hironori Matsunaga

2014 ◽  
Vol 778-780 ◽  
pp. 903-906 ◽  
Author(s):  
Kevin Matocha ◽  
Kiran Chatty ◽  
Sujit Banerjee ◽  
Larry B. Rowland

We report a 1700V, 5.5mΩ-cm24H-SiC DMOSFET capable of 225°C operation. The specific on-resistance of the DMOSFET designed for 1200V applications is 8.8mΩ-cm2at 225°C, an increase of only 60% compared to the room temperature value. The low specific on-resistance at high temperatures enables a smaller die size for high temperature operation. Under a negative gate bias temperature stress (BTS) at VGS=-15 V at 225°C for 20 minutes, the devices show a threshold voltage shift of ΔVTH=-0.25 V demonstrating one of the key device reliability requirements for high temperature operation.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mahjoub Jabli ◽  
Faouzi Aloui ◽  
Béchir Ben Hassine

Considered as ligands due to the presence of donor atoms in their chemical structures, and being also among the major pollutants of water, Eriochrome Black B (Erio), Calmagite (Calma) and Acid Blue 25 (AB25) were successfully immobilized on cellulose-chitosan microspheres loaded with copper ions. Prepared supports were characterized by Fourier Transform Infra-Red (FTIR) spectral study and Thermogravimetic analysis (TGA). The effect of experimental factors during dye immobilization such as pH, contact time, temperature, and initial dye concentration were studied. The experiments demonstrate that the adsorption capacities of dyes on [Cu(II)/cellulose-chitosan] are much higher than the unloaded microspheres. This indicates that these dyes can act as efficient ligands for coordinating metals already involved in [cellulose-chitosan]. At least, in the case of AB25, a 60% of difference in target removal was achieved at equilibrium. The kinetic adsorption fitted well to the intra-particle diffusion model and the corresponding rate constants were obtained. In addition, the interpretation of the equilibrium sorption data complies well with the Freundlich model. The thermodynamic parameters were also determined and the enthalpy change (ΔH&Deg;) was found to be low, between −5.93 and −20.68 Kj.mol-1, indicating that the adsorption phenomenon is exothermic and physical. A probable mechanism of the Dye/Copper(II)/cellulose-chitosan complex is also proposed.


Sign in / Sign up

Export Citation Format

Share Document